Общее понятие о переменном токе
В отличие от постоянного движения электронов в одном направлении, переменный ток меняет как направление, так и значение несколько раз за единицу времени. Изменения происходят по гармоническому закону. Если наблюдать подобный сигнал с помощью осциллографа, можно увидеть картинку в виде синусоиды.
Относительно оси ординат OY ток меняет своё направление с положительного на отрицательное и делает это периодически. Поэтому его мгновенное значение в первой позиции считается положительным, во второй – отрицательным.
Важно! Так как переменный ток – это алгебраическая величина, то говорить о его знаке заряда можно только для конкретного мгновенного значения, смотря, в каком направлении он протекает в этот момент.
Как выполняется измерение частоты
Перед тем как пользоваться мультиметром, а в частности, частотомером, внимательно нужно ознакомиться ещё раз с теми параметрами, которые он имеет возможность измерять. Для того чтобы правильно произвести их замер нужно освоить несколько этапов:
- Включить прибор соответствующей кнопкой на корпусе, чаще всего она выделена ярким цветом.
- Установить переключатель на измерение частоты переменного тока.
- Взяв в руки два щупа и подключив их, согласно инструкции в соответствующие гнёзда, произведём опробование измерительного устройства. Для начала нужно попробовать узнать частоту напряжения в стандартной сети 220 Вольт, она должна равняться 50 Гц (отклонение может быть в несколько десятых). Эта величина чётко контролируется поставщиком электрической энергии, так как при её изменении могут выйти из строя электроприборы. Поставщик отвечает за качество предоставляемой электроэнергии и строго соблюдает все её параметры. Кстати, такая величина является стандартной не во всех странах. Присоединив выводы частотомера к выводам розетки, на приборе высветится величина около 50 Гц. Если показатель будет отличаться, то это будет его погрешностью и при следующих измерениях это нужно будет обязательно учесть.
Далее, можно смело производить необходимые замеры, помня что частота есть только у переменного вида напряжения, постоянный ток не имеет изменяющегося периодически значения.
Лекция
Измерение мощности с использованием направленных ответвителей
Метод измерения мощности с использованием направленных ответвителей основан на явлении отражения падающей волны от нагрузки. Проходящая мощность — это мощность попавшая в нагрузку
Рис. 1
Небольшая часть волны будет ответвляться через отверстия в боковой волновод (рис 1). Расстояние между отверстиями . Вправо будет распространяться часть мощности равная , где . Две волны из 1-ого и 2-ого отверстий складываются в фазе. Волны распространившиеся влево будут в противофазе.
Отраженная волна также пройдет через отверстия (обозначено пунктиром на рис. 1). Однако две отраженные волны, прошедшие через отверстия будут в противофазе из-за разности хода в . При движении влево две волны будут складываться в фазе, но они полностью поглотятся в нагрузке и отражения не будет.
Таким образом направленный ответвитель может выделять либо падающую волну, либо отраженную (если верхний волновод направить в другую сторону). Направленный ответвитель характеризуется коэффициентом затухания и коэффициентом направленности Рассмотрим структурную схему вольтметра проходящей мощности (рис. 2)
Рис. 2
В данной схеме использовано два вольтметра поглощаемой мощности, которые поглощают практически всю мощность.
Измерение частоты применяется довольно часто, и при этом бывает необходима высокая точность измерения. Существует несколько способов измерения частоты. Рассмотрим резонансный способ измерения частоты.
Периодический переменный ток
Тот, который, изменяясь, успевает вернуться к своему исходному значению через одинаковые временные интервалы и при этом проходит весь цикл своих преобразований, называется периодическим. Его можно проследить на синусоиде, изображённой на экране осциллографа.

Период и амплитуда синусоидального колебания
Видно, что через одинаковые интервалы времени график повторяется без перемен. Эти интервалы обозначаются буквой Т и называются периодами. Частота, с которой в единицу времени укладывается определённое количество подобных периодов, – это частота тока переменного значения.
Её можно вычислить по формуле частоты переменного тока:
f = 1/T,
где:
- f – частота, Гц;
- T – период, с.
Частота равна количеству периодов в секунду и имеет единицу измерения 1 герц (Гц).
Внимание! Единица частоты в системе СИ носит имя Генриха Герца. 1 герц (Гц, Hz) = 1 с-1. К ней применимы кратные и дольные, выраженные стандартными приставками СИ, единицы.
Стандарты частоты
Для того чтобы обеспечить согласование работы источников переменного электричества, систем передач, приём и работу электропотребителей, применяются стандарты частоты. Используемая частота в электротехнике некоторых стран:
- 50 Гц – страны бывшего СССР, Прибалтики, страны Европы, Австралия, КНДР и другие;
- 60 Гц – стандарт, принятый в США, Канаде, Доминиканской республике, Тайвани, на Каймановых островах, Кубе, Коста-Рике, Южной Корее и ещё в некоторых странах.
В Японии используются обе частоты. Восточные регионы (Токио, Сендай, Кавасаки) используют частоту 50 Гц. Западные области (Киото, Хиросима, Нагоя, Окинава) применяют частоту 60 Гц.
К сведению. Железнодорожная инфраструктура Австрии, Норвегии, Германии, Швейцарии и Швеции по сей день применяет частоту 16,6 Гц.
Характеристики
Электрический ток характеризуется величинами, которые описывают его свойства.
Сила и плотность тока
Для описания характеристики электричества часто используют термин «сила тока». Название не совсем удачное, так как оно характеризует только интенсивность движения электрических зарядов, а не какую-то силу в буквальном смысле. Тем не менее, этим термином пользуются, и он означает количество электричества (зарядов) проходящего через плоскость поперечного сечения проводника. Единицей измерения силы тока в системе СИ является ампер (А).
1 А означает то, что за одну секунду через поперечное сечение проводника проходит электрический заряд 1 Кл. (1А = 1 Кл/с).
Плотность тока – векторная величина. Вектор направлен в сторону движения положительных зарядов. Модуль этого вектора равен отношению силы тока на некотором перпендикулярном к направлению движения зарядов сечении проводника к площади этого сечения. В системе СИ измеряется в А/м2. Плотность более ёмко характеризует электричество, однако на практике чаще используется величина «сила тока».
Разница потенциалов (напряжение) на участке цепи выражается соотношением: U = I×R, где U – напряжение, I – сила тока, а R – сопротивление. Это знаменитый закон Ома.
Мощность
Электрическими силами совершается работа против активного и реактивного сопротивления. На пассивных сопротивлениях работа преобразуется в тепловую энергию. Мощностью называют работу, выполненную за единицу времени. По отношению к электричеству применяют термин «мощность тепловых потерь». Физики Джоуль и Ленц доказали, что мощность тепловых потерь проводника равна силе тока умноженной на напряжение: P = I× U. Единица измерения мощности – ватт (Вт).
Частота
Переменный ток характеризуется также частотой. Данная характеристика показывает, как за единицу времени изменяется количество периодов (колебаний). Единицей измерения частоты является герц. 1 Гц = 1 периоду за секунду. Стандартная частота промышленного тока составляет 50 Гц.
Ток смещения
Понятие «ток смещения» ввели для удобства, хотя в классическом понимании его нельзя назвать током, так как отсутствует перенос заряда. С другой стороны, интенсивность магнитного поля пребывает в зависимости от токов проводимости и смещения.
Токи смещения можно наблюдать в конденсаторах. Несмотря на то, что при зарядке и разрядке между обкладками конденсатора не происходит перемещения заряда, ток смещения протекает через конденсатор и замыкает электрическую цепь.
Амплитуда переменного тока
Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно буквами Im, Em и Um (рисунок 1).
Резонансный способ измерения частоты
Резонансный способ измерения частоты основан на использовании резонансных цепей. Рассмотрим цепь с сосредоточенными параметрами.
Рис. 3
На колебательный контур подается напряжение . С помощью конденсатора колебательный контур настраивается в резонанс со входным сигналом. Частота резонанса определяется выражением
Из выражения (2) видно, что если шкалу градуировать в единицах частоты, то она получается крайне неравномерной и поэтому ее градуируют в некоторых условных единицах. Для перевода этих единиц в единицы частоты используют специальные таблицы. Резонанс в колебательном контуре определяют по максимальному току в цепи. Чем острее резонансная характеристика, том точнее измерение. Что бы уменьшить потери в контуре, необходимо выполнение следующих условий: и трансформаторная связь должна быть мала.
Такой метод измерения позволяет измерять частоты до 300 МГц. Точность измерения определяется добротностью контура, которая обычно достигает нескольких сотен. Точность в этом случае составляет (0,1 – 1)%
На более высокой частоте используют цепи с распределенными параметрами. Примером цепи с распределенными параметрами является короткозамкнутая линия изображенная на рис. 4.
Рис. 4
На рис. 4 цифрой 1 обозначен элемент настройки, который может перемещаться в горизонтальном положении и изменять длину l
коаксиального кабеля с высокой точностью (порядка 0,01 мм), которая достигается благодаря использованию микрометрической резьбы.
В этой линии резонанс возникает при и при . При вычитании и . При этом методе напрямую измеряется длина волны, а частота находится из выражения . Поэтому такие измерители еще называют волномерами. В данном случае волномер называется полуволновым волномером, т. к. резонанс в нем наступает при длине волны . Добротность порядка .
Рис. 5
В качестве цепи с распределенными параметрам можно также использовать объемный резонатор (рис. 5). Объемный резонатор — это резонансная система. Принцип измерения такой же.
Большинство методов измерения частоты используют метод уравновешивания, причем в качестве сравнивающего устройства может использоваться обычный осциллограф. Рассмотрим осциллографический метод измерения частоты.
содержание .. 31 32 37 ..
Методы измерения частоты и применяемые приборы
Измерение основной физической величины — времени и ее производной — частоты, а также воспроизведение и хранение единиц ; их измерения лежат в основе большинства измерительных задач. Основой частотно-временной аппаратуры является группа стандартов частоты, включающая водородный, рубидиевый, цезиевый и кварцевый стандарты, которые хранят единицу времени — секунду и единицу частоты — герц.
Приборы для измерения частоты, называемые частотомерами, делятся на резонансные 42, электронно-счетные 43, гетеродинные 44, и др. Измерять частоту можно разными приборами и методами. Промышленность выпускает стрелочные частотомеры (43-1, 43-7 и др.), которые позволяют отсчитывать частоту непосредственно по шкале используемого в нем стрелочного прибора в диапазоне от 10 Гц и до 500 кГц. Отклонение стрелки прибора зависит от усредненного значения тока заряда или разряда образцового конденсатора, перезаряжаемого напряжением измеряемой частоты. Поскольку ток в цепи прямолинейно зависит от напряжения, такие частотомеры имеют равномерную шкалу и обладают относительно большим входным сопротивлением.
Рис. 43. Функциональная схема гетеродинного частотомера
Для измерения высоких частот и СВЧ используют методы сравнения измеряемой частоты с известной частотой собственных колебаний в резонансной системе. Рассмотрим эти методы.
Гетеродинный метод основан на сравнении исследуемых колебаний fx с колебаниями градуированного высокоточного генератора (гетеродина) fэт с помощью смесителя. На рис. 43 показана функциональная схема гетеродинного частотомера (волномера), состоящего из гетеродина Г, смесителя С и выходного прибора ВП (индикатора), в котором сравнение частоты колебаний производится методом биений.
Принцип измерения состоит в следующем. На блок смесителя подается колебание высокостабильной частоты fэт от гетеродина и колебание частоты fх. С выхода смесителя колебание разностной частоты биений fзв подается на выходной прибор, отградуированный в соответствующих единицах измерений (частотах или длинах волн). Несмотря на простоту устройства, гетеродинные частотомеры позволяют измерять частоту в пределах 30—’ 3000 МГц с высокой точностью.
В основу резонансного метода измерения частоты положено явление электрического резонанса. Волномеры состоят из высокодобротного контура, механизма настройки и индикатора.
В зависимости от диапазона измеряемых частот колебательный контур частотомера может выполняться из высокодобротного контура LC с сосредоточенными постоянными, либо в виде отрезка коаксиальной линии, либо в виде объемного резонатора.
Функциональная схема резонансного частотомера показана на рис. 44. На измеряемую частоту настраивается в резонанс контур ЬКС«.
Зная индуктивность
LK и емкость Ск, легко вычислить измеряемую частоту. Наличие резонанса в контуре
LKCb регистрирует
ся по максимальному показанию индикатора. Обычно резонансный частотомер имеет набор сменных катушек LK,
позволяющих перекрыть диапазон частот от нескольких сотен килогерц до нескольких десятков мегагерц.
Резонансные частотомеры сверхвысоких частот состоят из коаксиальных и объемных резонаторов. Отрезок коаксиальной линии, представляющей собой колебательный контур, связывается с источником колебаний (генератором) и детектором петлями связи (рис. 45). Настройка контура в резонанс осуществляется изменением длины I
внутреннего проводника коаксиальной линии. Если на длине отрезка линии укладывается четверть волны измеряемого колебания, возникает резонанс. Момент настройки в резонанс отмечают по максимальному отклонению стрелки индикатора, включенного в цепь детектора. Измерение исследуемой длины волны состоит в нахождении двух соседних резонансов в линии и определении расстояния между ними; оно равно половине длины волны исследуемого колебания. Резонансные волномеры позволяют измерять длины волн от нескольких сантиметров до нескольких дециметров.
Отечественная промышленность выпускает большую номенклатуру частотомеров для измерения в диапазоне СВЧ: например, резонансные коаксиальные частотомеры на частоты от 40 до 10700 МГц (Ч2-2А и 42-37) и волноводные на частоты от 8 до 16,6 ГГц (42-33 и 42-31). Типы частотомеров и измеряемый ими диапазон частот приведены на рис. 46.
Для осуществления автоматического измерения частоты в диапазоне до 10 ГГц предназначен резонансный волноводный панорамный частотомер 42-55, который позволяет осуществлять автоматическое измерение по индикатору прибора одновременно нескольких частот, излучаемых генераторами СВ4. Он широко
применяется при проверке и ремонте генераторов в лабораторных и производственных условиях. Частотомер выполнен полностью на полупроводниковых приборах, погрешность измерений 0,5%, чувствительность 5-10~3 мВт. Габариты прибора 480X255X480 мм, масса 28 кг.
Для лабораторных измерений частоты применяют электронносчетные частотомеры, выдающие результаты измерений в цифровой форме.
Действие этих приборов основано на преобразовании измеряемого синусоидального напряжения в короткие прямоугольные импульсы, соответствующие измеряемой частоте. Эти импульсы регистрируются счетчиком.
Например, за 1 с счетчик регистрирует 1 • 106 импульсов, значит, измеряемая частота будет равна 1 МГц. Такие ча- тотомеры облегчают процесс измерения в широких преде
лах частот (от нескольких герц до сотен мегагерц), период следования и длительность импульсов. Они также могут быть использованы в качестве источников кварцованных частот, датчиков калиброванных интервалов времени и др.
Электронно — счетные частотомеры (универсальные ЧЗ-47А, 43-49 и упрощенные 43-44, 43-45, 43-46) осуществляют программируемое измерение частоты радиосигналов от долей герца до СВ4-диапазонов с погрешностью ±5-10-9 и интервалов времени от 1 до 104 мкс с погрешностью ±0,1 мкс. Они выдают результаты измерений в коде, обеспечивающем математические вычисления, статистическую обработку и регистрацию их в цифровой и аналоговой формах.
содержание .. 31 32 37 ..
Многофазный переменный ток
Для запуска и работы многих промышленных устройств и электрооборудования требуется не одна фаза, а несколько. В связи с этим рассматривают такие понятия, как двухфазный и трёхфазный переменные токи.
Трёхфазный ток
Этот вид электричества применяют в трёхфазной системе, в которую включены три однофазные цепи. Цепи имеют ЭДС переменной природы одной и той же частоты. Эти ЭДС сдвинуты по фазе относительно друг друга на ϕ = Т/3 = 2π/3. Такую систему называют трёхфазным током, а цепь – фазой.
Выработка, преобразование, доставка и потребление переменного электрического тока в основном происходят по трёхфазной системе электроснабжения.

Трёхфазный переменный ток
Двухфазный ток
Ещё в 1888 году Никола Тесла выполнил описание того, как можно на практике применить двухфазную сеть, и предложил разработанную им конструкцию двухфазного двигателя. Такие сети начали применять в начале 20 века. Они состояли из двух контуров.
Там напряжения контуров сдвигались по фазе на 900. Каждая фаза включала в себя два провода, у двухфазных генераторов было по два ротора, также конструктивно развёрнутые на угол 900.
Важно! Такие сети позволяли производить мягкий пуск двухфазных электродвигателей, практически с нулевого момента вращения. В то время как для запуска однофазного асинхронного двигателя требуется дополнительная пусковая обмотка или система запуска.

График двухфазного напряжения и схематический рисунок двухфазного генератора
Действующее значение синусоидального тока
Под действующим значением понимают его эффективность. Она равна такому значению постоянного тока, который выполнит ту же работу, что и переменный, за один период времени. Под работой здесь подразумевают его тепловую или электродинамическую направленность. Удобнее всего использовать среднеквадратичное значение переменного электричества.
Тогда действующее значение для синусоидального тока определяют по формуле:
I = * Im ≈ 0,707* Im,
где Im – величина амплитуды тока.

Действующее значение тока
Коэффициент амплитуды и коэффициент формы
Для удобства расчётов, связанных с измерением действующих значений при искажённых формах тока, используются коэффициенты, которыми связаны между собой амплитудное, среднеквадратичное и средневыпрямленное значения.
Коэффициент амплитуды – отношение амплитудного значения к среднеквадратичному.
Для синусоидального тока и напряжения коэффициент амплитуды KA = √2 ≈ 1.414
Для тока и напряжения треугольной или пилообразной формы коэффициент амплитуды KA = √3 ≈ 1.732
Для переменного тока и напряжения прямоугольной формы коэффициент амплитуды KA = 1
Коэффициент формы – отношение среднеквадратичного значения к средневыпрямленному.
Для переменного синусоидального тока или напряжения коэффициент формы KФ ≈ 1.111
Для тока и напряжения треугольной или пилообразной формы KФ ≈ 1.155
Для переменного тока и напряжения прямоугольной формы KФ = 1
Замечания и предложения принимаются и приветствуются!
Измерение частоты
Стоит напомнить, что интересуясь тем, как померить частоту мультиметром, предварительно важно ознакомиться с особенностями аппарата, который предстоит проверить. Только так можно достичь желаемого результата с максимально точными показателями.
Измерение частоты мультиметром со специальной функцией является наиболее удобным, поскольку в данном случае нет необходимости в использовании специальных приставок.
Происходят такие замеры в несколько этапов:
- В первую очередь необходимо проверить измеритель на точность. Известно, что в сети частота имеет значение 50 Гц. Чтобы определить погрешность в работе тестера, необходимо подсоединить его к розетке. Показатель, отличающийся от 50 Гц, и будет погрешностью измерительного аппарата.
- Далее, при помощи измерительных щупов необходимо подсоединить тестер к измеряемому прибору. Предварительно ознакомившись с инструкцией использования тестера, можно узнать необходимое для точности проверки напряжение. Установив показатель напряжения на нужное значение, можно приступать непосредственно к определению полных циклов изменения тока.
- После этого измерение частоты тестером будет зависеть только от того, как изменяется период переменного тока.
Многих также интересует, как проверить частоту мультиметром при помощи специальных приставок. Частотомер — приставка к мультиметру является отличной альтернативой дорогим измерителям с множеством функций.
Многие тестеры с функцией определения циклов изменения тока имеют низкую чувствительность, потому дают неточные показатели. Приставка является дополняющим средством к измерителю. Она позволяет преобразовать полученные данные в напряжение.
Чтобы измерение частоты тока мультиметром имело минимальную погрешность, необходимо правильно подсоединить частотомер. Переключатель рода работ в измерительном приборе необходимо настроить так, чтобы переключатель указывал на постоянное напряжение. В таком случае нет необходимости перестраивать приставку при подключении к аппарату с входным сопротивлением, превышающим 1 мОм.
Измерение частоты тестером может давать разные результаты, зависящие в первую очередь от точности работы аппарата.
Потому при выборе способа проверки необходимо решить, насколько серьезно влияет на показатели погрешность прибора и/или приставки.
Где используется и в чём преимущества переменного и постоянного тока
Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.
Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.
Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.
Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).
Как вычислить частоту и период тока
Формула, используемая для расчета периода одного цикла:
Т = 1 / f
Значения:
T – период времени 1 цикла.
f – частота.
Для того, чтобы вычислить частоту, необходимо применять обратную формулу, исходя из обратно пропорциональной зависимости: f = 1 / T.
Подведем итоги
Такие важные показатели электрического тока, как период и частота, важно понимать и учитывать при подборе соответствующего оборудования. Знание характеристик сети необходимо прежде всего для специалистов инженерно-технического блока. Полезно разобраться в вопросе и обывателям, приобретающим те или иные электроприборы, бытовую и иную технику.
Обозначения на электроприборах и схемах
Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.
Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.
На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.
Проводники электрического тока
Среди множества веществ, лишь некоторые являются проводниками. К хорошим проводникам относятся металлы. Важной характеристикой проводника является его удельное сопротивление.
Небольшое сопротивление имеют:
- все благородные металлы;
- медь;
- алюминий;
- олово;
- свинец.
На практике наиболее часто применяют алюминиевые и медные проводники, так как они не слишком дорогие.
Метод сравнения частот с помощью биений
Рис. 8
В данном методе используется эффект биения при сложении двух колебаний. Для анализа биений используется осциллограф. На рис. 8 изображена структурная схема измерителя использующего данный метод.
Если частоты сигналов находятся в диапазоне звуковых волн, то для анализа суммарного сигнала можно использовать наушники. Если измеряемая частота и образцовая частота не равны, в наушниках будет слышно два разных звука. При сложении этих частот возникают биения (рис. 9).
На рис. 9 период биений , сигнал такой формы называется биением с близкими гармониками. Нужно, чтобы биения происходили реже. Когда , измеряемая частота . Частота биений
.
Рис. 9
Не стоит путать сигнал с биениями (рис. 9) и амплитудно-модулированный сигнал, т. к. спектр АМ сигнала имеет 3 гармоники: центральную и 2 боковые, а в сигнале с биением только 2 гармоники, соответствующие частотам и . Если в наушниках тон звука сливается, то можно сказать, что частоты и равны.
Точность измерения частоты определяется точностью отсчета частоты .резонансный ответвитель плотность колебание
Стоимость цифровых измерительных клещей в зависимости от характеристик
В зависимости от цены все приборы можно разделить на эконом-сегмент в ценовом диапазоне от 4 000 до 15 000 рублей и профессиональные стоимостью от 15 000 до 60 000 рублей. Так как большинство приборов имеет расширенный функционал независимо от цены, сравнение проводилось исходя из основных характеристик приборов и их прямого назначения.
Основные характеристики устройств в зависимости от ценового сегмента
Эконом-сегмент | Профессиональные | |
Диапазон измерений | ||
Постоянное напряжение | от 0,1 до 750В | от 0,01 до 1000В |
Переменное напряжение | от 0,1 до 750В | от 0,01 до 1100В |
Постоянный ток | от 0,1 до 1000А | от 0,001 до 2000А |
Переменный ток | от 0,1 до 1000А | от 0,001 до 2000А |
Погрешность | ||
Базовая погрешность | 1,5 – 4,0% | 0,5 – 1,5% |
Токи высокой частоты
ТВЧ – такова их аббревиатура, используются для плавки металлов, закалки поверхности металлических изделий. ТВЧ – это токи, имеющие частоту более 10 кГц. В индукционных печах используют ТВЧ, помещая проводник внутрь обмотки, через которую пропускают ТВЧ. Под их воздействием возникающие в проводнике вихревые токи разогревают его. Регулируя силу ТВЧ, контролируют температуру и скорость нагрева.
Интересно. Расплавляемый металл может быть подвешен в вакууме с помощью магнитного поля. Для него не нужен тигель (специальный ковш для нагрева). Так получают очень чистые вещества.
Плюсы использования ТВЧ в разных случаях:
- быстрый нагрев при ковке и прокате металла;
- оптимальный температурный режим для пайки или сварки деталей;
- расплав даже очень тугоплавких сплавов;
- приготовление пищи в микроволновых печах;
- дарсонвализация в медицине.
Получают ТВЧ с помощью установок, включающих в свой состав колебательный контур, или электромашинных генераторов. У статора и ротора генераторов на сторонах, обращённых друг другу, нанесены зубцы. Их взаимное движение порождает пульсацию магнитного поля. Частота на выходе тем больше, чем больше произведение числа зубцов ротора на частоту его вращения.