Читайте также
ГЛАВА 5. «ЛЮДИ ГИБНУТ ЗА МЕТАЛЛ»
ГЛАВА 5. «ЛЮДИ ГИБНУТ ЗА МЕТАЛЛ»Поэма «Фауст» Иоганна Вольфганга фон Гете – произведение не только о продаже души дьяволу, но и, как ни странно, настоящий экономический трактат. В одном из действий, происходящем при дворе средневекового императора, описывается внедрение
Какой из живых организмов является самым крупным?
Какой из живых организмов является самым крупным?Признаюсь, ничто не приводит меня в больший ужас, чем вид грибов на столе, особенно в маленьком провинциальном городке. Александр Дюма Ответ: гриб.Причем даже не какой-то там особенно редкий. На пнях в вашем
Что из этого является китайским изобретением?
Что из этого является китайским изобретением?Стремитесь к знаниям, даже если они идут из Китая. Пророк Магомет а) Стекло.б) Рикша.в) Чоп суи.г) Печенье с предсказанием.Чоп суи. Существует масса фантастических историй об американском происхождении этого блюда,
Какой металл является жидким при комнатной температуре?
Какой металл является жидким при комнатной температуре?Помимо ртути, жидкими при комнатной температуре могут быть также галлий, цезий и франций. Поскольку все эти жидкости очень плотные (металлы все-таки), кирпичи, лошадиные подковы и пушечные ядра теоретически будут в
Какой из химических элементов является самым плотным?
Какой из химических элементов является самым плотным?Либо осмий, либо иридий – в зависимости от того, как мерить.Оба металла чрезвычайно близки друг к другу по плотности и несколько раз менялись местами за последние годы. Третьим по плотности элементом является платина,
Какой город мира является самым крупным?
Какой город мира является самым крупным?а) Мехико.б) Сан-Паулу.в) Мумбай.г) Гонолулу.д) Токио.Гонолулу – хотя вопрос этот слегка с подковыкой.Согласно гавайскому государственному уложению, принятому в 1907 году, город и округ Гонолулу являются единым и неделимым
Что является «забавой королей»?
Что является «забавой королей»?В разные времена фразу применяли к таким развлечениям, как гонки на колесницах, рыцарские турниры, соколиная охота, игра в шары, поло и – в совсем недалеком прошлом – скачки.И все же в течение большей части 2000 лет мировой новой истории
Что из приведенного ниже является орехом?
Что из приведенного ниже является орехом?Если вы, конечно, не против, когда от вас денька два-три несет ореховым маслом, то арахисовое масло – чертовски классный крем для бритья. Барри Голдуотер [114] а) Миндаль.б) Арахис.в) Бразильский орех.г) Грецкий
Почему собака стала проводником на тот свет?
Почему собака стала проводником на тот свет?В мифах множества народов Старого и Нового Света проводником душ на тот свет является собака. Существует не менее распространенный вариант мифа о собаке, которая, напротив, сторожит вход в загробный мир и выход с того света
Почему собака стала проводником на тот свет?
Почему собака стала проводником на тот свет?В мифах множества народов Старого и Нового Света проводником душ на тот свет является собака. Существует не менее распространенный вариант мифа о собаке, которая, напротив, сторожит вход в загробный мир и выход с того света
Лучшие проводники электрического тока
Все вещества в зависимости от электропроводности делятся на проводники, полупроводники и диэлектрики.
Самыми хорошими проводниками электрического тока являются металлы. Металлы являются проводниками как в твёрдом, так и в жидком состоянии. При прохождении электрического тока через металлические проводники не изменяются ни их масса, ни их химический состав. Следовательно, атомы металлов не участвуют в переносе электрических зарядов. Исследования природы электрического тока в металлах показали, что перенос электрических зарядов в них осуществляется только электронами.
Особенностью атомов всех металлов является малое количество электронов на внешней электронной оболочке. При соединении атомов металлов в кристалл связь между атомами устанавливается путём объединения внешних электронных оболочек. Наличие большого числа вакантных мест на внешних оболочках позволяет электронам после объединения атомов в кристалл свободно переходить от одного атома к другому. В пределах кристалла валентные электроны металлов можно рассматривать как свободные заряженные частицы.
Экспериментально обнаружено, что удельное сопротивление р металлов линейно зависит от температуры:
р = р0 (1 + αt)
В данном уравнении р0 – удельное электрическое сопротивление при температуре 0˚ С, t – температура проводника по шкале Цельсия, α – температурный коэффициент сопротивления, р – удельное сопротивление при температуре t. Возрастание удельного сопротивления проводников с повышением температуры объясняется тем, что валентные электроны атомов металлов могут свободно переходить с оболочки одного атома на оболочку другого атома только при определённых расстояниях между центрами атомов, когда их валентные оболочки перекрываются. В результате теплового движения атомы в кристалле колеблются относительно равновесных положений. Смещение атомов от равновесных положений нарушает перекрывание их электронных оболочек и затрудняет переходы электронов от атома к атому. Чем выше температура кристалла, тем больше амплитуда тепловых колебаний атомов, больше нарушений в расположении атомов в кристалле, больше препятствий для движения электронов.
При приближении температуры металлического проводника к абсолютному нулю количество дефектов в кристаллической решётке, создаваемых тепловым движением атомов, стремится к нулю, поэтому и удельное сопротивление проводника приближается к нулю.
Однако у некоторых металлов удельное электрическое сопротивление падает до нуля при температуре выше абсолютного нуля. Это явление называется сверхпроводимостью. Например, удельное сопротивление ртути становится равным нулю при температуре 4,2 К.
При создании электрического тока в кольце из сверхпроводника сила тока остаётся неизменной неограниченно долго, так как нет потерь на нагревание проводника.
К настоящему времени созданы материалы, переходящие в сверхпроводящее состояние при сравнительно высокой температуре около 100 К (-173˚ С).
Остались вопросы? Не знаете, как рассчитать сопротивление проводника?Чтобы получить помощь репетитора – зарегистрируйтесь.Первый урок – бесплатно!
© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.
blog.tutoronline.ru
Свободные электроны
Металлы в твёрдом состоянии имеют кристаллическую структуру: расположение атомов в пространстве характеризуется периодической повторяемостью и образует геометрически правильный рисунок, называемый кристаллической решёткой.
Атомы металлов имеют небольшое число валентных электронов, расположенных на внешней электронной оболочке. Эти валентные электроны слабо связаны с ядром, и атом легко может их потерять.
Когда атомы металла занимают места в кристаллической решётке, валентные электроны покидают свои оболочки — они становятся свободными и отправляются «гулять» по всему кристаллу (а именно, свободные электроны перемещаются по внешним орбиталям соседних атомов. Эти орбитали перекрываются друг с другом вследствие близкого расположения атомов в кристаллической решётке, так что свободные электроны оказываются «общей собственностью» всего кристалла). В узлах кристаллической решётки металла остаются положительные ионы, пространство между которыми заполнено «газом» свободных электронов (рис. 1).
Рис. 1. Свободные электроны
Свободные электроны и впрямь ведут себя подобно частицам газа (другой адекватный образ — электронное море, которое «омывает» кристаллическую решётку) — совершая тепловое движение, они хаотически снуют туда-сюда между ионами кристаллической решётки. Суммарный заряд свободных электронов равен по модулю и противоположен по знаку общему заряду положительных ионов, поэтому металлический проводник в целом оказывается электрически нейтральным.
Газ свободных электронов является «клеем», на котором держится вся кристаллическая структура проводника. Ведь положительные ионы отталкиваются друг от друга, так что кристаллическая решётка, распираемая изнутри мощными кулоновскими силами, могла бы разлететься в разные стороны. Однако в тоже самое время ионы металла притягиваются к обволакивающему их электронному газу и, как ни в чём не бывало, остаются на своих местах, совершая лишь тепловые колебания в узлах кристаллической решётки вблизи положений равновесия.
Что произойдёт, если металлический проводник включить в замкнутую цепь, содержащую источник тока? Свободные электроны продолжают совершать хаотическое тепловое движение, но теперь — под действием возникшего внешнего электрического поля — они вдобавок начнут перемещаться упорядоченно. Это направленное течение электронного газа, накладывающееся на тепловое движение электронов, и есть электрический ток в металле (поэтому свободные электроны называются также электронами проводимости). Скорость упорядоченного движения электронов в металлическом проводнике, как нам уже известно, составляет приблизительно 0,1мм/с.
Особенности понятия
Проводниками тока называют те вещества, в которых количество свободных электрических зарядов превышает число связанных. Они могут начинать двигаться под влиянием внешней силы. Состояние материалов может быть газообразным, твёрдым и жидким. Электричество может протекать по металлической проволоке, если её подключить между двумя проводниками с разными потенциалами.
Ток переносят электроны, не связанные между собой атомами. Именно они способны охарактеризовать способность предмета пропускать через себя электрические заряды, или величину проводимости тока. Её значение обратно пропорционально сопротивлению, она измеряется в сименсах: См = 1/Ом.
Основные носители электричества в природе — это ионы, дырки и электроны. Поэтому способность к проводимости делят на три вида:
- ионную;
- электронную;
- дырочную.
Приложенное напряжение даёт возможность оценить качество проводника. Эту способность вещества называют ещё вольт-амперной характеристикой.
Удельное электрическое сопротивление стали
Многие в курсе, что заземление это соединение корпусов приборов и других железок со специальной конструкцией , вкопанной в грунт. Оно призвано замкнуть опасное напряжение на ноль подстанции и не дать ему добраться до вашего тела. Но как именно оно это делает? Конечно, земля это не изолятор — в ней есть жидкость и растворы разных веществ, способных проводить ток. Но расстояние от места заземления до, собственно, подстанции иногда измеряется десятками километров — как ток может дойти так далеко по такому плохому проводнику? Читайте дальше — мы всё вам расскажем! Главный фактор , который обеспечивает работоспособность заземления — бесконечно большое сечение грунта. Представьте себе плохой проводник, например графит. Если сравнить его с медным проводником той же толщины, он проводит ток хуже в ! А теперь, мысленно начнём увеличивать сечение графитового проводника.
Технические характеристики проводов
Характеристики кабелей разнятся между собой. Оба металла имеют сильные и слабые стороны. Эти параметры необходимо знать для правильного выбора, монтажа и обслуживания проводки в квартире. Для их сравнения следует учесть ряд критериев.
Удельное электрическое сопротивление
Эта величина показывает связь между материалом проводника и электрическим сопротивлением. От этого параметра зависит, какой максимальный ток сможет пропустить кабель без перегрева и расплавления изоляции.
Металл | Удельное электрическое сопротивление, Ом*мм2/м |
---|---|
Медь | 0,017 |
Алюминий | 0,028 |
Из таблицы следует, что при равных длинах и сечениях сопротивление алюминиевых проводов будет в 1,67 выше. Отсюда более высоким будет и нагрев при равных токах.
У меди меньше сопротивление поэтому можно обойтись кабелем меньшего сеченияк содержанию ↑
Теплопроводность
Данный параметр характеризует возможность проводника рассеивать лишнее тепло. Это свойство важно принять во внимание, ведь на кабеле не должно быть локальных перегревов. Для учета этого параметра применяет коэффициент теплопроводности. Чем он выше, тем лучше металл рассеивает температуру.
Металл | Коэффициент теплопроводности, Вт/(м*°C) |
---|---|
Медь | 389,6 |
Алюминий | 209,3 |
Очевидно, что превосходство меди сохраняется. Она рассеивает тепло в 1,86 раза эффективнее.
Высокая теплопроводность меди позволяет пропускать ток большей мощностик содержанию ↑
Температурный коэффициент сопротивления
Температура проводки влияет на электрическое сопротивление. Отсюда будет меняться и падение напряжение в электросети. Связь между нагревом и проводимостью кабеля характеризуется температурным коэффициентом сопротивления.
Металл | Температурный коэффициент сопротивления |
---|---|
Медь | 0,043 |
Алюминий | 0,042 |
Таблица показывает, что сопротивления металлов при нагреве ведут себя практически одинаково.
к содержанию ↑
Вес кабелей из алюминия и меди
От этого параметра будет зависеть удобство монтажа и стоимость проводки. Вес вещества первостепенно зависит от плотности.
Металл | Плотность, кг/м3 |
---|---|
Медь | 8900 |
Алюминий | 2700 |
При равных объемах соотношение масс меди и алюминия составляет 3,3 раза. Для квартирной проводки этот фактор некритичен. Но для монтажа воздушных линий электропередач вес токоведущей жилы играет значимую роль. В данном случае алюминий выигрывает. Его масса ощутимо меньше.
Из-за меньшего веса алюминиевый провод исползуется на воздушных линиях электропередачик содержанию ↑
Прочность при растяжении
Это свойство применимо к воздушным линиям. Проводник должен выдерживать свой вес и круглогодичные растяжения из-за летней жары и зимних морозов. Прочность металлов определяется их временным механическим сопротивлением.
Металл | Временное сопротивление, МПа |
---|---|
Медь | 200-250 |
Алюминий | 80-120 |
Таблица показывает, что медь на разрыв в 2 раза прочнее.
к содержанию ↑
Период эксплуатации
Время эксплуатации кабеля зависит от условий среды. Если говорить о квартирной проводке, то срок службы рассматриваемых кабелей имеет существенные отличия.
Металл | Ориентировочный период эксплуатации, лет |
---|---|
Медь | 30 |
Алюминий | 15 |
В старых домах проводку выполняли из алюминия. Она до сих пор исправно служит. Однако с цифрами не поспоришь. Срок службы медной проводки в 2 раза больше.
Медные провода отличаются больше долговечностьюк содержанию ↑
Зависимость сопротивления проводника от частоты тока
При воздействии электрического тока индукция магнитного поля происходит внутри прямолинейного проводника и в окружающем его пространстве. Магнитные линии образуют концентрические окружности.

Распределение переменного тока по сечению
Если проводник с током условно разбить на несколько параллельных друг другу нитей тока, то можно установить, что, чем ближе токовая нить находится к оси проводника, тем больший замыкающийся внутри магнитный поток её охватывает. Индуктивность нити и индуктивное сопротивление находятся в пропорциональной зависимости от магнитного потока, с нею связанного.
В связи с этим в нитях с переменным током, находящихся внутри проводящего вещества, возникает большее индуктивное сопротивление, чем в нитях, находящихся снаружи. Образуется неравномерность тока по сечению, возрастающая от оси к поверхности проводника, чем и объясняется увеличение сопротивления проводников переменному току. Это явление называется поверхностным эффектом.
Из-за неравномерного распределения плотности тока происходит увеличение сопротивления проводника. При небольшой частоте в 50 Гц и малом сечении медного провода явление поверхностного эффекта почти незаметно. При значительном увеличении частоты и сечения проводника из железа это явление будет более активным.
Обратите внимание! Чем выше частота тока в цепи, тем ближе к поверхности проводника находятся электрические заряды, и тем больше возрастает его сопротивление.
Самый электропроводный металл в мире
Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), — серебро.
Но высокая стоимость ограничивает применение деталей из серебра в электротехнике и микроэлектронике. Серебряные элементы в таких приборах применяются только в случае экономической целесообразности.
Физический смысл проводимости
Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, печатных плат и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.
Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица электрической проводимости в системе СИ – сименс. Русское обозначение этой единицы – См, интернациональное – S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.
Удельная проводимость
Мера способности вещества проводить электроток называется удельной электропроводностью. Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. Удельная электропроводность цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.
Системной единицей удельной проводимости является сименс на метр – См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора – микроомметра. Эти характеристики являются обратнозависимыми.
Проводимость металлов
Само понятие электрического тока как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.
Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток. Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл. На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство — высокая теплопроводность.
Топ лучших проводников — металлов
4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:
- Серебро — 62 500 000.
- Медь – 59 500 000.
- Золото – 45 500 000.
- Алюминий — 38 000 000.
Видно, что самый электропроводный металл – серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина – высокая стоимость.
Зато медь и алюминий – самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.
Факторы, влияющие на проводимость металлов
Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.
Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.
Самый электропроводный металл — это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.
fb.ru
Классическая теория электропроводности металлов
Основные положения теории электропроводности металлов содержат шесть пунктов. Первый: высокий уровень электропроводности связан с наличием большого числа свободных электронов. Второй: электрический ток возникает путем внешнего воздействия на металл, при котором электроны из беспорядочного движения переходят в упорядоченное.
Третий: сила тока, проходящего через металлический проводник, рассчитывается по закону Ома. Четвертый: различное число элементарных частиц в кристаллической решетке приводит к неодинаковому сопротивлению металлов. Пятый: электрический ток в цепи возникает мгновенно после начала воздействия на электроны. Шестой: с увеличением внутренней температуры металла растет и уровень его сопротивления.
Природа электропроводности металлов объясняется вторым пунктом положений. В спокойном состоянии все свободные электроны хаотическим образом вращаются вокруг ядра. В этот момент металл не способен самостоятельно воспроизводить электрические заряды. Но стоит лишь подключить внешний источник воздействия, как электроны мгновенно выстраиваются в структурированной последовательности и становятся носителями электрического тока. С повышением температуры электропроводность металлов снижается.
Это связано с тем, что слабеют молекулярные связи в кристаллической решетке, элементарные частицы начинают вращаться в еще более хаотичном порядке, поэтому построение электронов в цепь усложняется. Поэтому необходимо принимать меры по недопущению перегрева проводников, так как это негативно сказывается на их эксплуатационных свойствах. Механизм электропроводности металлов невозможно изменить ввиду действующих законов физики. Но можно нивелировать негативные внешние и внутренние воздействия, которые мешают нормальному протеканию процесса.
Как земля может проводить ток и почему заземление всё-таки работает: разгадка секрета
К материалам этого типа предъявляются следующие требования: минимальное значение удельного электрического сопротивления; достаточно высокие механические свойства главным образом предел прочности при растяжении и относительное удлинение при разрыве ; способность легко обрабатываться, что необходимо для изготовления проводов малых и средних сечений; способность образовывать контакты с малым переходным сопротивлением при пайке, сварке и других методах соединения проводов; коррозионная стойкость. Окисляется на воздухе медные провода на воздухе в условиях близости моря подвергается усиленной коррозии за счёт действия содержащихся в воздухе солей. Алюминий в 3,5 раза легче меди. Если из алюминия и меди сделать провода равного сопротивления, то провод из Al хоть и будет иметь сечение в 1,63 раза больше, но всё равно будет в 2 раза легче медного.
Сталь вообще это сплав железа с углеродом. И железо и углерод хорошо проводят электрический ток. Вячеслав. Во все стороны. Металл, однако.
Формула определения длины проводника
Найти длину проводника можно путём непосредственного его измерения, например, рулеткой. Если предстоит подсчитать протяженность скрытой электропроводки в жилище, нужно учесть, что прокладывают её обычно горизонтально по стенам на расстоянии 15-20 см от потолка. Вертикально, под прямым углом, делают опуски на выключатели и розетки. Если проводник труднодоступен (заземляющие проводники), либо длина его велика, этот метод может оказаться сложно выполнимым.
Тогда длина проводника определяется другим способом. Для этого необходимо подготовить:
- строительную рулетку,
- тестер,
- штангенциркуль,
- таблицу электропроводности металлов.
Сначала нужно измерить сопротивление отдельных участков электропроводки. Далее определить сечение провода и материал, из которого он изготовлен. Обычно в быту используются алюминиевые или медные проводящие материалы.
Из формулы определения сопротивления (R = r * L * s) находят длину проводника по формуле:
L = R / r*s,
где:
- L – длина провода,
- R – его сопротивление,
- r – удельное сопротивление материала (для меди составляет от 0,0154 до 0,0174 Ом, для алюминия – от 0,0262 до 0,0278 Ом),
- s – площадь поперечного сечения провода.
Рассчитывают сечение провода:
S = π/4 * D2,
где:
- π – число, приблизительно равное 3,14;
- D – диаметр, замеряемый штангенциркулем.
Если необходимо найти длину провода, смотанного в бухту, определяют длину одного витка в метрах и умножают на число витков.
Если катушка круглого сечения, измеряют её диаметр, умножают на число π и на количество витков:
L = d * π * n,
где:
- d – диаметр катушки,
- n – число витков провода.
Хороший проводник – электричество – Большая Энциклопедия Нефти и Газа, статья, страница 1
Хороший проводник – электричество
Cтраница 1
Хорошие проводники электричества – это такие тела, в которых электрические частицы могут свободно перемещаться. Электропроводность металлов обусловлена тем, что часть электронов, содержащихся в металле, находится в подвижном состоянии. Такие электроны называются свободными электронами или электронами проводимости. [2]
Алюминий – хороший проводник электричества; гидрат окиси алюминия тока не проводит. На этом различии основано устройство электролитического выпрямителя с алюминиевым анодом. Катодом может быть железо, свинец, уголь. Электролитом служит насыщенный раствор углекислого аммония. Такой выпрямитель могут собрать сами учащиеся. [3]
Первые из них – хорошие проводники электричества, вторые – электрический ток не проводят. [5]
Эти покрытия являются также хорошим проводником электричества. [7]
Почему серебро и медь являются хорошими проводниками электричества. [8]
Как правило, металлы являются хорошими проводниками электричества, особенно медь и алюминий. [9]
Раствор NaNh3 в жидком аммиаке является хорошим проводником электричества, что указывает на ионизацию данного вещества в растворителе. Структуры амидов как простых, так и сложных имеют большое сходство со структурами галогенидов и гидроксидов. Например, высокотемпературные модификации амидов калия, рубидия и цезия относятся к структурному типу NaCl, но при обычных температурах эти соединения обладают менее симметричным строением. [10]
К металлам обычно относят простые вещества, являющиеся хорошими проводниками электричества ( проводники первого рода) и тепла, обладающие характерным металлическим блеском ( высокой способностью отражать свет), непрозрачностью, вязкостью, ковкостью, тягучестью. Металлические свойства сохраняются только в твердом и жидком состояниях, в парах они исчезают. [11]
Все металлы являются, как известно, не только хорошими проводниками электричества, но и хорошими проводниками тепла. С точки зрения электронной теории, это совпадение объясняется не простой случайностью, а является следствием одной общей причины – присутствия в металлах свободных электронов. В металлах, в отличие от непроводников, передача тепла осуществляется не только столкновениями атомов, но также, и притом по преимуществу, свободными электронами. Приобретая в нагретом участке добавочную энергию движения, легкоподвижные электроны сравнительно быстро переносят ее в своем движении в смежные участки тела и тем самым значительно ускоряют процесс теплопроводности. [12]
Все металлы являются, как известно, не только хорошими проводниками электричества, но и хорошими проводниками тепла. С точки зрения электронной теории, это совпадение объясняется не простой случайностью, а является следствием одной общей причины – – присутствия в металлах свободных электронов. В металлах, в отличие от непроводников, передача тепла осуществляется не только столкновениями атомов, но также, и притом по преимуществу, свободными электронами. Приобретая в нагретом участке добавочную энергию движения, легкоподвижные электроны сравнительно быстро переносят ее в своем движении в смежные участки тела и тем самым значительно ускоряют процесс теплопроводности. [13]
Все металлы являются, как известно, не только хорошими проводниками электричества, но и хорошими проводниками тепла. С точки зрения электронной теории, это совпадение объясняется не простой случайностью, а является следствием одной общей причины – присутствия в металлах свободных электронов. В металлах, в отличие от непроводников, передача тепла осуществляется не только столкновениями атомов, но также, и притом по преимуществу, свободными электронами. Приобретая в нагретом участке добавочную энергию движения, легкоподвижные электроны сравнительно быстро переносят ее в своем движении в смежные участки тела и тем самым значительно ускоряют процесс теплопроводности. [14]
Водный раствор, в котором имеются ионы, служит хорошим проводником электричества. Вообще, чем выше ионная концентрация, тем лучше раствор проводит ток. Неионные растворы тока не проводят. Это простое различие помогает классифицировать вещества. Те из них, чьи водные растворы являются проводниками, называются электролитами; те же вещества, растворы которых электричества не проводят, называются неэлектролитами. [15]
Страницы: 1 2 3 4
www.ngpedia.ru
Плюсы и минусы алюминиевых кабелей
Провода из меди по ряду технических характеристик превосходят алюминиевые. Но кабеля из серебристого металла по-прежнему востребованы и находят свое применение. Объясняется это достоинствами, которыми обладает алюминиевая проводка:
- малый вес и податливость при монтаже;
- дешевизна;
- устойчивость к окислению.
Электропроводка, выполненная из алюминиевой лапши обойдется дешеле
Не обходится и без недостатков:
- плохая тепло- и электропроводность;
- высокое сопротивление и его зависимость от температуры;
- низкая прочность, ломкость.
Важно! Работая с алюминиевыми кабелями, необходимо помнить об их низкой прочности. Если загнуть токоведущую жилу 3-7 раз, то с огромной вероятностью она сломается. Если надлом будет под изоляцией кабеля, то он может остаться незамеченным вплоть до окончания ремонта.
к содержанию ↑
Проводники и непроводники электричества — урок. Физика, 8 класс.
Электроскоп — это простейший прибор для обнаружения электрических зарядов и приблизительного определения их величины.
Простейший школьный электроскоп изображён на рисунке. В нём металлический стержень (3) с листочками (4) пропущен через пластмассовую пробку (5) (втулку), вставленную в металлический корпус (1). Корпус с обеих сторон закрыт стёклами (2).
Если к положительно заряженному электроскопу поднести тело, заряженное таким же знаком, как электроскоп, то его листочки разойдутся сильнее.
Обрати внимание!
Приближая к электроскопу тело, заряженное противоположным по знаку зарядом, заметим, что угол между листочками электроскопа уменьшится.
Таким образом, заряженный электроскоп позволяет обнаружить, каким зарядом наэлектризовано то или иное тело.
По отклонению листочков электроскопа можно определить также, увеличился или уменьшился его заряд. Чем больше угол, на который разойдутся листочки электроскопа при его электризации, тем сильнее он наэлектризован. Значит, тем больший электрический заряд на нём находится.
Существует ещё один вид электроскопа — электрометр.
В нём вместо лепестков на металлическом стержне укреплена стрелочка. Она, заряжаясь от стержня, отталкивается от него на некоторый угол.
По способности передавать электрические заряды вещества делятся на проводники, полупроводники и непроводники электричества.
Проводниками называют тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному.
Хорошие проводники электричества — это металлы, почва, вода с растворёнными в ней солями, кислотами или щелочами, графит. Тело человека также проводит электричество. Это можно обнаружить на опыте. Дотронемся до заряженного электроскопа рукой. Листочки тотчас опустятся. Заряд с электроскопа уходит по нашему телу через пол комнаты в землю.Из металлов лучшие проводники электричества — серебро, медь, алюминий.
Непроводниками называют такие тела, через которые электрические заряды не могут переходить от заряженного тела к незаряженному.
Непроводниками электричества, или диэлектриками, являются эбонит, янтарь, фарфор, резина, различные пластмассы, шёлк, капрон, масла, воздух (газы). Изготовленные из диэлектриков тела называют изоляторами.
Полупроводниками называют тела, которые по способности передавать электрические заряды занимают промежуточное положение между проводниками и диэлектриками.
К полупроводникам относятся кремний, германий, селен и др. У полупроводников способность проводить электрические заряды резко увеличивается при повышении температуры.
Обрати внимание!
При помощи электроскопа (электрометра) можно проверить, является ли данное вещество проводником электричества.
Если прикоснуться данным веществом к стержню заряженного электроскопа (держа его в руках) и его заряд станет равным нулю, то данное вещество является проводником. Если показание не изменится, то данное вещество — диэлектрик.
Необходимо учитывать, что при изменении влажности, например, сухое дерево (диэлектрик) становится влажным. Вода является проводником электричества, поэтому влажное дерево тоже становится проводником.
Источники:
Пёрышкин А.В. Физика, 8 класс// ДРОФА, 2013.
уроки.мирфизики.рф/index.php?option=com_content&view=article&id=146:30—&catid=38:2011-11-29-17-15-09&Itemid=65
www.yaklass.ru
Кратко об интересных фактах
- Быстрота распространения электрического поля в металлах близка к скорости света. Это 300 000 км/с, а вот движение самих заряженных частиц невелико — меньше одного миллиметра в секунду.
- Электроны при движении по проводнику никуда не «утекают», несмотря на то, что являются носителями тока.
- Направление тока противоположно упорядоченному, направленному движению электронов.
Переработка после эксплуатации
Несмотря на длительный срок службы кабелей (от 15 до 30 лет), все они нуждаются в замене после истечения данного срока. После этого кабеля должны быть утилизированы и переработаны. Поиск проводов и их сдача на пункты приема металлолома позволяет частично решить проблему получения первичного сырья. Пункты приема принимают лом:
- бытовых;
- контрольных;
- силовых;
- специальных кабелей.
Цена за килограмм лома определяется:
- Качеством сдаваемого сырья.
- Процентным содержанием того или иного металла.
- Чистотой – количество загрязнений и окислов.
- Целостностью оболочки, а также сложностью дальнейшей обработки кабельного лома.
- Объемом вторсырья – чем больше кабельного лома сдается, тем выше цена за один килограмм.
Свойства диэлектриков
Выбор диэлектриков должен осуществляться в соответствии с их свойствами:
- Электрическими: пробивное напряжение (при котором наступает пробой), электрическая прочность (напряженность поля, при которой наступает пробой);
- Физико-химическими: стойкость к нагреванию (способность длительно выдерживать рабочую температуру), холодостойкость (способность переносить перепады температур), смачиваемость (способность отторгать влагу);
- Химическими: устойчивость к агрессивной среде, растворимость в лаках, возможность склеивания;
- Механическими: радиационная устойчивость, вязкость (для жидких диэлектриков), защищенность от коррозии, предел прочности, возможность инструментальной обработки.
Какие металлы лучше всего проводят электрический ток и где они используются
Какие металлы лучше всего проводят электрический ток и где они используются
Какой металл лучше всего проводит тепло и электрический ток? Металлы с наивысшей электропроводностью, а также назначение меди, серебра и других токопроводящих материалов.
какой металл лучше проводит, какой металл лучше проводит ток, какой металл лучше проводит электрический, какой металл лучше проводит тепло, какой металл лучше всего проводит электрический ток, какой металл лучше других проводит электрический ток
В этой статье мы рассмотрим, какой металл лучше всего проводит электрический ток. Сразу отметим, что чистые металлы являются более хорошими проводниками по сравнению со сплавами, потому что примеси препятствуют свободному движению электронов.
Наивысшей электропроводностью обладает чистое серебро. Медь немного уступает серебру, но ее большое преимущество – в более низкой стоимости. Благодаря этому в промышленных масштабах используется именно медь.
Золото – хороший проводник, к тому же оно не подвержено окислению. А высокая пластичность позволяет вытянуть сколь угодно тонкую проволоку. Поэтому золото применяется в микроэлектронике. Но недостатком металла является еще более высокая, чем у серебра, стоимость.
Какой металл лучше других проводит электрический ток из числа недорогих материалов? Алюминий. Он уступает предыдущим трем материалам по показателю электропроводности. Но все же он является сильным проводником и устойчив к коррозии. Недостаток алюминия – его повышенная ломкость.
Главное назначение этих материалов – элементы силовых установок, линий электропередач и всех механизмов, связанных с потреблением или передачей электрического тока.
Чаще всего применяются медь и алюминий, а также сплавы: бронзы, латунь. Рассмотрим, какие материалы подходят для производства той или иной продукции.
Медь
Используется только электролитических марок М I, М 0. Она бывает твердой и мягкой.
- Твердая за счет наклепа подходит для коллекторов, проводов.
- Мягкая, после отжига, подходит для производства обмоточных проводов, потому что имеет высокую гибкость.
Латунь
Из нее создаются сложнопрофильные токоведущие детали, которые должны обладать повышенной твердостью и стойкостью к электрическим разрядам.
Алюминий
Подходит для изготовления проводов для линий электропередач, обмоточных и монтажных проводов.
Золото и серебро
Эти дорогие материалы используются в производстве электроники, где их расход относительно небольшой.
Ниже представлена таблица с показателями электропроводности. В ней же видно, какой металл лучше всего проводит тепло.
spb-stal.ru
Покрытия на нержавеющей стали
Нержавеющая сталь — сплав железа с углеродом, преимущественно легированный большим количеством хрома и никеля. Из названия этого конструкционного материала понятно, что он находит основное применение в средах, вызывающих активную коррозию обычной стали. Так, нержавейка устойчива в промышленной атмосфере и воде, хорошо сопротивляется воздействию серной кислоты. В тоже время нержавеющая сталь плохо паяется, обладает достаточно низким коэффициентом трения, слабо проводит электрический ток, боится щелочей в отличие от углеродистой стали из-за присутствия в ней хрома. Однако все эти недостатки эффективно устраняются гальваническими покрытиями.
Я не электрик, но есть вопрос: если дотронуться до гайки, то обожгусь или получу электрический удар?
Проводники и диэлектрики в электричестве
Все материалы, существующие в природе, различаются своими электрическими свойствами. Таким образом, из всего многообразия физических веществ в отдельные группы выделяются диэлектрические материалы и проводники электрического тока.
Что представляют собой проводники?
Проводник – это такой материал, особенностью которого является наличие в составе свободно передвигающихся заряженных частиц, которые распространены по всему веществу.
Проводящими электрический ток веществами являются расплавы металлов и сами металлы, недистиллированная вода, раствор солей, влажный грунт, человеческое тело.
Металл – это самый лучший проводник электрического тока. Также и среди неметаллов есть хорошие проводники, например, углерод.
Все, существующие в природе проводники электрического тока, характеризуются двумя свойствами:
- показатель сопротивления;
- показатель электропроводности.
Сопротивление возникает из-за того, что электроны при движении испытывают столкновение с атомами и ионами, которые являются своеобразным препятствием. Именно поэтому проводникам присвоена характеристика электрического сопротивления. Обратной сопротивлению величиной является электропроводность.
Электропроводность – это характеристика (способность) физического вещества проводить ток. Поэтому свойствами надежного проводника являются низкое сопротивление потоку движущихся электронов и, следовательно, высокая электропроводность. То есть, лучший проводник характеризуется большим показателем проводимости.
Например кабельная продукция: медный кабель обладает большей электропроводностью по сравнению с алюминиевым.
Что представляют собой диэлектрики?
Диэлектрики – это такие физические вещества, в которых при заниженных температурах отсутствуют электрические заряды. В состав таких веществ входят лишь атомы нейтрального заряда и молекулы. Заряды нейтрального атома имеют тесную связь друг с другом, поэтому лишены возможности свободного перемещения по всему веществу.
Самым лучшим диэлектриком является газ. Другие непроводящие электрический ток материалы – это стеклянные, фарфоровые, керамические изделия, а также резина, картон, сухое дерево, смолы и пластмассы.
Диэлектрические предметы – это изоляторы, свойства которых главным образом зависимы от состояния окружающей атмосферы. Например, при высокой влажности некоторые диэлектрические материалы частично лишаются своих свойств.
Проводники и диэлектрики широко используются в сфере электротехники для решения различных задач.
Например, вся кабельно-проводниковая продукция изготавливается из металлов, как правило, из меди или алюминия. Оболочка проводов и кабелей полимерная, также, как и вилках всех электрических приборов. Полимеры – отличные диэлектрики, которые не допускают пропуска заряженных частиц.
Серебряные, золотые и платиновые изделия – очень хорошие проводники. Но их отрицательная характеристика, которая ограничивает использование, состоит в очень высокой стоимости.
Поэтому применяются такие вещества в сферах, где качество гораздо важнее цены, которая за него уплачивается (оборонная промышленность и космос).
Медные и алюминиевые изделия также являются хорошими проводниками, при этом имеют не столь высокую стоимость. Следовательно, использование медных и алюминиевых проводов распространено повсеместно.
Вольфрамовые и молибденовые проводники имеют менее хорошие свойства, поэтому используются в основном в лампочках накаливания и нагревательных элементах высокой температуры. Плохая электропроводность может существенно нарушить работу электросхемы.
Диэлектрики также различаются между собой своими характеристиками и свойствами. Например, в некоторых диэлектрических материалах также присутствуют свободные электрически заряды, пусть и в небольшом количестве. Свободные заряды возникают из-за тепловых колебаний электронов, т.е. повышение температуры все-таки в некоторых случаях провоцирует отрыв электронов от ядра, что понижает изоляционные свойства материала. Некоторые изоляторы отличаются большим числом «оторванных» электронов, что говорит о плохих изоляционных свойствах.
Самый лучший диэлектрик – полный вакуум, которого очень трудно добиться на планете Земля.
Полностью очищенная вода также имеет высокие диэлектрические свойства, но таковой даже не существует в реальности. При этом стоит помнить, что присутствие каких-либо примесей в жидкости наделяет ее свойствами проводника.
Главный критерий качества любого диэлектрического материала – это степень соответствия возложенным на него функциям в конкретной электрической схеме. Например, если свойства диэлектрика таковы, что утечка тока совсем незначительная и не приносит никакого ущерба работе схемы, то диэлектрик является надежным.
Что такое полупроводник?
Промежуточное место между диэлектриками и проводниками занимают полупроводники. Главное отличие проводников заключается в зависимости степени электропроводности от температуры и количества примесей в составе. При том материалу свойственны характеристики и диэлектрика, и проводника.
С ростом температуры электропроводность полупроводников растет, а степень сопротивления при этом падает. При понижении температуры сопротивление стремится к бесконечности. То есть, при достижении нулевой температуры полупроводники начинают вести себя как изоляторы.
Полупроводниками являются кремний и германий.
Статья по теме: Электрический ток и его скорость
www.elektro.ru
Введение, которое обычно никто не читает
ВИДЕО ПО ТЕМЕ: Медь и серебро в современных тепловых расцепителях.
Классическая теория электропроводности металлов зародилась в начале ХХ века. ЕЕ основоположником стал немецкий физик Карл Рикке. Он опытным путем установил, что прохождение заряда через металл не сопряжено с переносом атомов проводника, в отличие от жидких электролитов. Однако это открытие не объяснило, что именно является носителем электрических импульсов в структуре металла. Ответить на это вопрос позволили опыты ученых Стюарта и Толмена, проведенные в году. Им удалось установить, что за перенос электричества в металлах отвечают мельчайшие заряженные частицы — электроны.
Сразу замечу, что у тех, у кого меньше примесей и будут лучшими. Ну а по металлам как-то вот так распределилось, всего 3 металла:.