Проводники, диэлектрики и поток электронов

Содержание

Отличие токопроводящего клея от обычного

Основное отличие заключается в том, что состав токопроводящего клея предполагает наличие определенных компонентов, которые обеспечивают необходимый уровень электропроводности.

Из отличий можно выделить также:

  • более низкие прочностные показатели, чем у обычного;
  • в составе, как правило, содержится графит, металл или оба компонента в комплексе;
  • сфера применения имеет свою специфику;
  • стоимость таких составов несколько выше.

Стекло

В зависимости от требований могут использоваться разные сорта стекол, от легкоплавких натриевых до тугоплавких кварцевых. Основной плюс стекла, помимо его термостойкости — прозрачность для видимого света (а кварцевое прозрачно еще и для ультрафиолета). Также немаловажный плюс — возможность визуально оценить целостность, трещины обычно видны.

Примеры применения

Корпуса радиоламп, осветительных ламп, предохранителей. Кварцевые трубки — корпуса нагревателей, электрогрилей.

Недостатки.

Хрупкое, не выносит ударов. Некоторые сорта стекла растрескиваются при резком неравномерном нагреве.

Типичный признак (но не обязательный!) кварцевого стекла — большое количество свилей в направлении экструзии стекла.

Интересные факты о стекле

Здесь стоит дополнительно сказать про сапфировое стекло, закаленное стекло и химически закаленное стекло. В рекламных описаниях множества электронных устройств для массового потребления можно встретить упоминания этих видов стекол.
 

  • Сапфировое стекло формально стеклом не является (оно не аморфное, как стекла, а кристаллическое), но, в силу внешнего сходства, так именуется. Сапфировое стекло — это тонкие пластинки лейкосапфира (чистый Al2O3 — оксид алюминия). Лейкосапфир тверже обычных стекол, поэтому используется для защиты оптики от пыли, абразивного истирания песчинками в военной технике, и в дорогих устройствах бытового назначения. Стекло наручных часов из сапфира дольше останется нецарапанным. При этом, получение сапфировых стекол большого размера по вменяемой цене затруднительно, поэтому планшеты с сапфировым стеклом мы увидим нескоро.
  • Закаленное стекло. Стекло хорошо сопротивляется сжатию и плохо — растяжению. Повысить механическую прочность стекла можно его закалкой — стекло разогревают до высоких температур и резко и равномерно охлаждают. В результате в стекле образуются механические напряжения, которые увеличивают механическую прочность. Чаще всего закалку стекла делают для безопасности. Обычное стекло, если в него кинуть камнем, разбивается на несколько довольно крупных осколков, которые могут нанести серьезную травму. Закаленное стекло при разрушении дает много мелких осколков, которые значительно безопаснее. Поэтому все стекла в автомобиле, в торговых центрах, стеклянные полки мебели — закалены. Изделие из закаленного стекла обработке не подлежит, если попытаетесь стеклянную полочку для ванной подрезать, она с хлопком рассыпется в крошку, поэтому закалка производится после обработки. 
  • Химически закаленное стекло. Например, часто упоминаемое Gorilla glass. Для тонких пластинок стекла термический способ закалки не подходит, поэтому пластинки стекла обрабатывают в растворе, который, к примеру, замещает ион натрия на ион калия. Так как ион калия крупнее, то поверхностные слои стекла как бы «распирает» более крупными атомами в решетке, создавая как раз требуемые механические напряжения. Как итог — такое стекло прочнее, лучше сопротивляется царапинам.

Слюда

Слюда. Природный слоистый материал, обладает термостойкостью, прочностью, прекрасный диэлектрик. Слюды — большой класс слоистых минералов, из них в технике используется в основном мусковит и иногда биотит и флогопит.

По английски слюда — Mica, отсюда производные названия материалов на базе слюд — миканиты, микалента, микафолий, микалекс и т.д.

Слюда, добытая в руднике, разбирается, сортируется. Крупные куски вручную расщепляются на пластинки — так получается щипаная слюда — прозрачные однородные пластинки. Такая слюда обладает самым высоким качеством и идет на ответственные применения — в вакуумной технике, окна ввода/вывода излучения и т.д. К сожалению, крупные однородные куски слюды без дефектов — редкость, поэтому пластинки из слюды разной формы склеивают воедино, так получается миканит. Если в качестве подложки для наклеивания пластинок слюды использовать ткань (стеклоткань, бумагу) получается микалента, микафолий, стекломиканит. Совсем мелкие отходы слюды размалываются, и в виде водной пульпы отливаются на сетку, также как бумага. После удаления воды частички слюды слипаются в единое полотно — получается слюдяная бумага (слюдинит, слюдопласт). Получившееся полотно для прочности может пропитываться органическим связующим. Гибкость слюдяной бумаги позволяет наматывать её в качестве изоляции. Также намоткой можно получить стержни, трубки. Если пропитать слюду расплавленным стеклом, то получившийся прочный материал называется микалекс.

Перемолотая в пыль слюда — компонент пигментов, благодаря своей «чешуйчастости» дает перламутровый эффект. В пигментах используется в основном биотит.

Синтетический материал — фторфлогопит (synthetic mica) — это слюда (флогопит) где -OH группы заменены фтором. Фторфлогопит более прочен и термически стоек, выглядит также как слюда, тоже слоистый но абсолютно прозрачный/белый, а не желтоватого оттенка, как природная слюда. Увы, пока с этим материалом живьем не сталкивался.
 

Примеры применения

Конструктивные элементы для удержания нагревательных элементов в фенах, калориферах, тепловентиляторах, паяльниках и т.д.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Нагреватели бытовых тепловентиляторов. Конструкция слева менее материалоемкая, но значительно менее надежная, особенно в условиях механических нагрузок.

Как защитное окошко выхода микроволнового излучения от магнетрона в микроволновках. (обычно попадая на слюду еда обугливается, и становясь проводником, начинает бурно искрить, от чего владельцы микроволновки со страху микроволновку выбрасывают, хотя достаточно вырезать из листа слюды и заменить окошко.)

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Окошко вывода микроволнового излучения из слюды.

Благодаря тому, что тонкие пластинки слюды не пропускают газы, но пропускают энергичные заряженные частицы — слюдяные окошки используются в конструкциях счетчиков альфа и бета частиц.

Используется в конструкциях радиоламп — удерживает электроды на своих местах.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Восьмигранная пластинка изготовлена из слюды.

Используется как материал слюдяных конденсаторов. Слюда выступает диэлектриком, а электродами — проводящее напыление металла на пластинках слюды. Данный вид конденсаторов встречается всё реже и реже, вытесненный конденсаторами на базе полимерных пленок. Слюдяные конденсаторы могут работать при высокой температуре.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Слюдяные конденсаторы производства СССР полувековой давности.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Пластинки слюды в конденсаторе. Металлизация на пластинках формирует обкладки.

До появления и широкого распространения теплопроводящих изолирующих прокладок из полимерных материалов, вроде Номакон, слюдяные пластинки использовались для электрической изоляции компонентов при сохранении теплового контакта, например, когда необходимо на один радиатор закрепить несколько транзисторов, корпуса которых под разными напряжениями.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Пластинки природной щипаной слюды.
 

Интересные факты о слюде

Раньше, несколько веков назад, когда не умели делать тонкие оконные стекла, светопрозрачные конструкции делали расщепляя природную слюду. Так как большие куски слюды без дефектов были редкостью, то и окна принимали причудливую форму.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Природная слюда прозрачна. Слюдоматериалы полученные переработкой природной слюды как правило непрозрачны.

Слюда — достаточно мягкий материал, слюдяная пластинка (как и большинство материалов на её базе) легко режется ножницами. В силу своей слоистой природы, склеивание слюды — занятие малонадежное, сила сцепления меж слоев невысокая, поэтому при производстве детали из слюды скрепляют механически- заклепки, люверсы, винты и т. д.

Руководство по материалам электротехники для всех. Разбираемся с диэлектриками
Электрические соединения с нагревательным элементом выполнены полыми заклепками.
 

Нихромы

Для изготовления нагревателей, мощных сопротивлений требуются сплавы со следующими требованиями:

  • Относительно высокое удельное сопротивление — иначе нагреватель придется делать длинным и тонким, что отрицательно скажется на долговечности.
  • Устойчивость к окислению на воздухе. Если в колбу лампы накаливания попадет воздух, то спираль очень быстро сгорит. При высоких температурах скорости химических реакций растут, и кислород воздуха начинает окислять даже стойкие при комнатной температуре металлы.
  • Иметь приемлемые механические характеристики. Низкая пластичность и повышенная хрупкость негативно скажется на надежности изделия.

Нагреватели обычно изготавливают из следующих сплавов:

Нихром (55–78% никеля, 15–23% хрома) рабочая температура до 1100°С,  хотя нихромы — это целый класс сплавов с небольшой разницей в составе.

Фехраль, название образовано от состава FeCrAl (12–27% Cr, 3.5–5.5% Al, 1% Si, 0.7% Mn, остальное Fe) рабочая температура до 13501100°С. (Иногда называют канталом — kanthal, это не марка сплава, а торговая марка (Принадлежит компании Sandvik Materials Technology), которая стала нарицательной, как например «термос»).

Добавка хрома обеспечивает образование защитной пленки на поверхности сплава, благодаря чему нагреватели из нихрома могут длительное время работать на
воздухе с высокой температурой поверхности.

Фехраль после нагрева становится ломким. Нихром после нагрева еще можно как-то гнуть. При этом фехраль дешевле нихрома, в рознице не так заметно, но ощутимо в оптовых партиях.

Нихромовая спиралька с фитилем внутри — испаритель электронной сигареты.

Нихромовой струной, подогреваемой электрическим током, режут пенополистирол.

Также из нихрома изготавливают термосьемники изоляции — на сегодняшний день самый надежный способ снять изоляцию с провода и не повредить токопроводящую
жилу.

На удивление, достаточно трудно купить нихром в виде проволоки в небольших количествах, местные продавцы о количествах менее килограмма даже слышать не хотят. Так что, если понадобится изготовить нагревательный элемент — то проще перемотать нихром с какого-нибудь неисправного тепловентилятора.

Концы нагревательных элементов обычно приваривают к тоководам или зажимают механически — винтом или опрессовкой.

вначало лекции

Твердыедиэлектрики – это чрезвычайно широкий классвеществ,  содержащийвещества с радикально различающимисяэлектрическими,  теплофизическими,механическими свойствами. Например,диэлектрическая проницаемость меняется отзначения, незначительно превышающего 1, доболее чем 50000, в зависимости от типадиэлектриков: неполярный, полярный,сегнетоэлектрик. В главе 1 приводилисьопределения различных типов диэлектриков.Вкратце коснемся этих определенийприменительно к твердым диэлектрикам.

Неполярныйдиэлектрик– вещество, содержащее молекулы спреимущественно ковалентной связью.

Полярныйдиэлектрик– вещество,  содержащеедипольные молекулы или группы, или имеющееионы в составе структуры.

Сегнетоэлектрик– вещество, имеющее в составе области соспонтанной поляризацией.

Механизмыполяризации у них резко различаются:

-чисто электронная поляризация у неполярныхдиэлектриков типа полиэтилена, полистирола,при этом e-мала,не более 3, диэлектрические потери тоже малы;

-ионная поляризация у ионных кристалловтипа NaCl или дипольная у полярныхдиэлектриков типа льда, при этом eможет находиться в пределах от 3-4 до 100,диэлектрические потери могут быть весьмазначительны, в особенности на частотахвращения диполей и других резонансныхчастотах;

-доменная поляризация у сегнетоэлектриков -при этом eмаксимальна и может достигать 10000-50000,диэлектрические потери могут быть весьмазначительны, в особенности на резонансныхчастотах и в области повышенных частот.

Особенностимеханизмов проводимости в твердыхдиэлектриках – концентрация носителейочень мала, подвижность ионов в гомогенныхматериалах очень мала, подвижностьэлектронов в чистых материалах велика, втехнически чистых – мала. Механизмыэлектропроводности различны в разныхвеществах. Ионная проводимость реализуетсяу полидисперсных диэлектриков (картон,бумага, гетинакс, дерево) и ионныхкристаллов. В первом случае ионыпередвигаются по границам раздела,образованным слипшимися дисперснымичастицами. Появление носителей зарядасильно связано с влажностью этихматериалов и определяется, какрассматривалось в лекциях 2 и 9 диссоциациейпримесей и полярных групп основноговещества на поверхности раздела. В случаеионных кристаллов, в проводимостиучаствуют ионы основного вещества,примесей, дефекты структуры. Электроннаяпроводимость реализуется у титанатов бария,стронция и т.д., электронная, дырочная иионная проводимость у полимеров.

Добавимнекоторые термины, специфичные для твердыхдиэлектриков:

Warning.gifхимическаястойкостьспособность выдерживать контакты с разнымисредами (кислота – кислотостойкость, щелочь- щелочестойкость, озон – озоностойкость,масло – маслостойкость, вода – водостойкость);

Warning.gifтрекингостойкость-способность противостоять действию дуги;

Warning.gifдендритостойкость– способность противостоять образованиюдендритов.

А как ведут себя другие текстильные волокна?

Увы, натуральная шерсть способна накапливать статическое электричество – это ее природное свойство. И в причинах этого явления мы попробуем разобраться.

Шерсть служит животным не только для того, чтобы согревать в зимние морозы, а также чтобы получать информацию о переменах во внешних условиях обитания: повышении влажности, изменении давления, появлении мелких электрических разрядов – предвестников землетрясений или извержений вулканов. Воспринимать подобные сигналы животные могут благодаря изменению электрического заряда их шерсти. В природе “животное электричество” необходимо только для самозащиты или охоты, точнее для выживания в суровых условиях.

Почему электризуется шерсть

Даже шелк, хоть его и плетут гусеницы шелкопряда, и тот электризуется! Если взять во внимание теорию, говорящую о том, что если шелк электризуется, то это кому-нибудь нужно, можно представить, что гусеницы шелкопряда реагируют на изменения окружающей среды и передают это качество шелку. Поэтому шелк, пусть в минимальной степени, но при взаимодействии с противоположно заряженными предметами, способен электризоваться.

Вискоза считается “условно натуральной” тканью, так как производится из волокна целлюлозы искусственным путем. Вискоза склонна накапливать статическое электричество в минимальном количестве. Это говорит о том, что постельные принадлежности, белье, пледы и полотенца из данных тканей не притягивают пыль, не вызывают раздражений кожи и не бьют разрядами электричества при соприкосновении с телом человека.

И все же, эти материалы: шерсть, шелк и вискоза находятся в “красной” зоне, т.е. накапливают положительный заряд. Соответственно, наиболее опасно для них соседство с синтетическими материалами, и особенно, с полиэтиленом.

Полиэтилен и другие синтетические материалы “награждаются” этим свойством случайно. Этот “побочный” эффект никто специально не планирует, но тем он не становится приятнее.

См. также[править | править код]

  • Оптическое волокно
  • Диэлектрический волновод

Диэлектрик в постоянном электрическом поле

При помещении диэлектрика в постоянное электрическое поле заряды, из которых он построен, оказываются подверженными действию сил обусловливающих:

  1. смещение связанных зарядов (электроны, ионы),
  2. наложение на беспорядочное тепловое движение некоторого упорядоченного, состоящего в перемещении положительных зарядов в направлении поля, отрицательных зарядов — в обратном направлении.

Это упорядоченное перемещение может:

  • а) привести к новому равновесному состоянию с несколько измененным распределением зарядов, по достижению которого упорядоченное движение прекращается (вращение дипольных молекул, перемещение полусвязанных ионов);
  • б) продолжаться непрерывно, пока в нем существует в электрическое поле (свободные ионы и электроны).

Поляризации диэлектрика

Эти процессы будут развиваться с разной скоростью. Смещение связанных зарядов потребует для своего завершения лишь весьма малого времени; значительно медленнее протекают процессы. Смещение зарядов в электрическом поле, указанное, вызывает образование обратного поля, которое ослабляет приложенное внешнее поле. Это явление носит название поляризации диэлектрика. Мерой ослабления поля внутри него служит электрическая проницаемость (постоянная). Поскольку процесс поляризации не протекает мгновенно, а требует для завершения некоторого конечного промежутка времени, постольку связанные с явлением поляризации величины, в частности диэлектрическая проницаемость, не являются константами, а переменными величинами, зависящими от времени. При повышении температуры увеличивается интенсивность теплового движения, и переход в упорядоченное состояние затрудняется. Вследствие этого при наличии процессов, на поляризацию диэлектрика и его диэлектрическую проницаемость должна влиять и температуpa, причем при повышении температуры диэлектрическая проницаемость должна убывать.

Олово

Sn — Олово. Основной компонент мягких припоев. Олово — относительно легкоплавкий металл, что позволяет использовать его для соединения проводников. В чистом виде не используется (см. факты). Из-за дороговизны олова (а также других причин, см. ниже), его в припоях разбавляют свинцом. Припой из 61% олова и 39% свинца образует  эвтектику,
такой смесью, ПОС-61 (Припой Оловянно-Свинцовый — 61% олова) паяют радиодетали на платах, провода. В менее ответственных узлах (шасси, теплоотводы, экраны и т.п.) олово в припоях разбавляют сильнее, до 30% олова, 70% свинца.

Электронные устройства долгое время паяли оловянно-свинцовыми припоями. Затем набежали экологи и заявили, что свинец — металл тяжелый, токсичный, и проблемы бы не было, если бы все эти ваши айфоны, компьютеры и прочие гаджеты не оказывались на свалке, откуда свинец попадает в окружающую среду. Поэтому придумали серию бессвинцовых припоев, когда олово разбавлено висмутом, или вовсе используется в чистом виде, стабилизированное добавками, например, серебра. Но эти припои дороже, хуже по характеристикам, более тугоплавкие. Поэтому оловянно-свинцовые припои надолго останутся в ответственных изделиях военного, космического, медицинского применения.

Кроме того, бессвинцовые припои склонны к образованию “усов”. (Помимо олова, склонны создавать “усы” также покрытия из кадмия и цинка.) Оловянные усы — длинные тонкие кристаллы, вырастающие из оловянного припоя — причина отказов и сбоев аппаратуры. К сожалению, присадки в припои не позволяют на 100% прекратить рост “усов”, поэтому оловянно-свинцовые припои, как проверенные временем, используются в критичных системах — космос, медицина, военка, атомные применения.

Подробнее про усы.

Катушки и прутки оловянно-свинцовых припоев. Проволока из припоя содержит
центральный канал с флюсом, облегчающим процесс пайки.

Факты об олове

  • Чистое олово подвержено “оловянной чуме”, когда при температурах ниже 13,2°С олово меняет свою кристаллическую решетку, превращаясь из блестящего металла в серый порошок (как при нагревании алмаз превращается в графит). Согласно байкам, оловянная чума — одна из причин поражения Наполеоновской армии в условиях суровых российских городов (представьте, как на морозе ваши пуговицы, ложки, вилки, кружки превращаются в серый порошок). И вполне состоявшийся факт, что оловянная чума стала одной из причин которая погубила экспедицию Скотта — консервные банки, емкости с топливом были пропаяны оловом и на морозе просто развалились.  Небольшая добавка висмута практически устраняет оловянную чуму.
  • Олово проводит электрический ток в 7 раз хуже меди.
  • Олово используется как защитное покрытие консервных банок — луженая жесть при контакте с пищей не делает её опасной. (но так как олово правее железа в ряду напряженности металлов, лужение не защищает железо от коррозии гальванически, как цинк, который левее железа в ряду напряженности. Как работает гальваническая защита можно прочитать по ссылке).
  • До широкого распространения алюминия, фольгу делали из олова, её называли “станиоль” (от stannum — латинское название олова).
  • Не пытайтесь отремонтировать ювелирные украшения при помощи мягких оловянных и оловянно-свинцовых припоев. Прочность соединения будет неприемлемой, а наличие легкоплавкого припоя на поверхности осложнит нормальную пайку твёрдыми припоями.

Параметры изоляции

К числу основных относятся:

  • электропрочность;
  • удельное электрическое сопротивление;
  • относительная проницаемость;
  • угол диэлектрических потерь.

Оценивая качество и эффективность диэлектриков, и сравнивая их свойства, нужно выявить зависимость перечисленных параметров от значений тока и напряжения. По сравнению с проводниками электроизоляционные компоненты имеют повышенную электрическую прочность. Учитывая сказанное выше, не менее важным является то, насколько хорошо изоляторы сохраняют свои полезные свойства и удельные величины при нагревании, увеличении напряжения и других воздействиях.

Параметры изоляции для силовых кабелей

к содержанию ↑

Легкоплавкие припои

На базе сплавов с содержанием олова были разработаны легкоплавкие припои. И даже очень легкоплавкие припои, которые плавятся в горячей воде. Хороший список сплавов есть в Википедии.

Проект«Какие вещества проводят электричествопри растворении в воде»

Электрическийпоток – результат движения электрическизаряженных частиц(электричества) поддействиемсил приложенного к ним электрическогополя. Чистая вода плохо проводитэлектричество, но некоторые элементы,растворенные в ней, позволяют ей проводитьток. Такие вещества при растворенииобразуют ионы (заряженные частицы),которые переносят заряд внутри раствора.Растворы, обладающие этим свойством,называются электролитами. Чем большеионов в растворе, тем выше его проводимость.Неэлектролиты – растворы, не содержащиеионы и не проводящие ток. Электролитымогут быть слабыми или сильными. Этозависит от того, как они ионизируются:полностью или частично.

Проводимостьраствора можно измерить при помощиустройства проводимости, состоящегоиз двух металлических электродов, обычнорасполагаемых на расстоянии 1 см (именнопоэтому она измеряется в микросименсахили миллисименсах на сантиметр). На обаэлектрода подается постоянное напряжение.Это вызывает электрический ток врастворе. Поскольку он пропорционаленколичеству ионов в воде, проводимостьможно измерить. Чем выше концентрацияионов, тем выше проводимость образца.

Устройствопроводимости обычно используется вгидропонике, бассейнах, а также системахочистки воды для отслеживания количествапитательных веществ, солей или загрязнений.

Растворнекоторых веществ в воде проводитэлектричество. Эти вещества прирастворении образуют ионы, и эти ионыпереносят заряд через раствор. Этотпроектнаправлен на то, чтобы собрать устройстводля выявления того, раствор каких веществможет проводить электричество,а каких – нет.

Вфокусе этого проекта – созданиеустройства, которое позволило быопределить, какие вещества, будучирастворенными, могут проводитьэлектричество – и каким типом электролитаони в этом случае являются.

Чтонам понадобится:

  • устройство проводимости;
  • пластиковые стаканчики;
  • большие скрепки;
  • изолента;
  • разные виды воды: дистиллированная, минеральная, газированная;
  • уксус;
  • сахар;
  • соль.

Ходэксперимента:

  1. Эксперименты с электричеством в домашних условиях требуют внимательности. Не глотайте вещества, используемые в этом опыте!
  2. Приготовьте разные виды воды.
  3. Приготовьте растворы соли и сахара, растворив их в дистиллированной воде.
  4. Налейте жидкость в стаканчик.
  5. Разогните скрепки, закрепив их изолентой на противоположных сторонах стаканчика.
  6. Не помещайте контакты прямо в раствор, иначе со временем они заржавеют. Вместо этого поместите их на скрепки, а скрепки опустите в раствор.
  7. Результаты наблюдений отобразите в таблице и в виде графика. В зависимости от того, какое устройство проводимости вы используете, отметьте, горят ли LED-лампы и степень их яркости. Ополаскивайте стаканчик и скрепки дистиллированной водой между опытами.
  8. Если неподалеку есть источник, проверьте воду из него на проводимость. Если она проводит электричество, подумайте, какие вещества могли быть в нем растворены и откуда они могли взяться.
  9. Отметьте галочкой поле, соответствующее свету, производимому LED-лампой. В зависимости от яркости лампы распределите жидкости на сильные, средние, слабые электролиты или неэлектролиты.
Интенсивность света/ жидкость Яркий Средней яркости Слабый Нет света Тип электролита
Дистиллированная
Из-под крана
Минеральная
Дождевая
Раствор соли
Раствор сахара
Газированная
Уксус

Вывод:

Чтотакое электричество? Что такое электролит?Что такое проводимость? Какие веществаоказались хорошими электролитами порезультатам опыта? Посмотрите на этикеткубутылки минеральной воды. Как вы думаете,какие вещества в ее составе помогаютпроводить ток? Посмотрите на этикеткубутылки газированной воды. Как выдумаете, какие вещества в ее составепомогают проводить электричество?Жидкая паста внутри батареек для фонарика– электролит. Какие из протестированныхвеществ могли бы использоваться вкачестве такого электролита? Подумайте,какие еще опытыс электричеством в домашних условияхможно провести на основе проведенногопроекта.

Основные припои для радиоаппаратуры

  • ПОС-61 — 61% олова, остальное — свинец. Температура плавления (ликвидус) 183°С. Есть множество сходных по составу и по свойствам импортных припоев, в которых пропорции компонентов отличаются на пару процентов, например Sn60Pb40 или Sn63Pb37.
  • ПОС-40 — 40% олова. Остальное — свинец. Температура плавления (ликвидус) 238°С. Менее прочный, более тугоплавкий, неэвтектический (плавится не сразу, есть диапазон температур при котором припой больше походит на кашу). Но благодаря тому, что чуть ли не в два раза дешевле (олово дорогое), применяется для неответственных соединений — пайка экранов, шин. Аналогичны припои ПОС-33 (247°С), ПОС-25 (260°С), ПОС-15 (280°С). За счет постепенного затвердевания удобен для литья мелких вещей вроде оловянных солдатиков: в кашицеобразном состоянии его можно “подтолкнуть” в литник палочкой и создать дополнительное давление в форме. Получить такое же качество изделий из ПОС-61 заметно труднее.
  • Бессвинцовые припои. Для пайки медных водопроводных труб горелкой чаще всего используют мягкий припой с 3% меди (Sn97Cu3). Он не содержит свинца, потому пригоден для питьевой воды. По экологическим причинам современную электронику на заводах паяют в основном бессвинцовыми припоями. Хорошая статья.

Замыкают список совсем легкоплавкие припои:

  • Сплав Розе: 25% Sn, 25% Pb, 50% Bi. Температура плавления +94°С.
  • Сплав Вуда: 12,5% Sn, 25% Pb, 50% Bi, 12.5% Cd Температура плавления +68,5°С.

Применяются для лужения печатных плат любителями, так как плавятся в горячей воде, и можно резиновым шпателем под слоем кипящей воды быстро покрыть припоем медную фольгу печатной платы. (Но такой способ лужения автор не рекомендует, при пайке печатных плат луженных таким способом возможно образование тонкого слоя легкоплавкого припоя под пайкой, что может провоцировать разрушение соединения при эксплуатации при повышенной температуре.) В технике их используют для пайки деталей, не  выдерживающих нагрева до обычной температуры припоев, или в тех случаях, когда зачем-то нужен очень легкоплавкий металл (например, для датчика температуры).

Если спаять подпружиненные контакты легкоплавким припоем, то получится простой и надежный термопредохранитель, при превышении температуры припой плавится и контакты разрывают цепь. Правда, предохранитель получится одноразовым. Во многих советских телевизорах в блоке строчной развертки была защита из обычной стальной
спиральной пружинки, припаянной на легкоплавкий припой. При перегреве, в том числе от большого тока через пружинку, она отпаивалась и отрывалась. Предохранители такого
типа очень хороши как защита от пожара.

Проект«Проводник или изолятор»

Электрическийток возникает только тогда, когда длянего создан непрерывный путь, по которомуон может протекать. Множество материаловмогут использоваться для замыканияцепи и создания потока. Такие материалыназываются проводниками электричества.Большинство металлов, включая алюминий,считаются хорошими проводниками.Материалы, не проводящие электрическийток, называются изоляторами. Большинствопредметов, сделанных из пластика ирезины, являются изоляторами. Важнопонимать разницу между проводниками иизоляторами не только для созданияцепей, но и для строительства домов иприготовления пищи, не говоря уже обезопасности.

Определите, какие предметы домашнего обихода хорошо проводят электричество.

Цель– продемонстрировать понимание простыхзамкнутых цепей и оценить проводимостьобычных бытовых предметов.

Чтонам понадобится:

  • четыре фрагмента изолированного провода (желательно с зажимами на концах);
  • батарейка D;
  • маленькая лампочка;
  • бытовые предметы для испытания: скрепка, зубочистка, фольга, банан, жестяная банка, монета и др.;
  • держатель для лампочки (опционально);
  • держатель для батарейки (опционально).

Ходэксперимента:

  1. Соберите простую замкнутую цепь, соединив батарейку и лампочку двумя проводами. Пример можно увидеть на графике.
  2. Если вы не используете держатели, то провода необходимо расположить так, чтобы один из них соединял плюс батарейки и контакт на нижней части лампочки, а другой – минус батарейки и контакт на боковой части цоколя. Для фиксации контактов используется изолента. Если цепь замкнута, лампочка должна загореться.
  3. Соберите хотя бы 10-14 бытовых предметов для опыта. Выбирайте предметы из разных материалов: металла, пластика, дерева.
  4. Включите один предмет в цепь, чтобы проверить, проводник это или изолятор. Сначала отключите один зажим от лампочки и присоедините его к предмету. Соедините другим проводом этот предмет и лампочку. Если она загорится, предмет является проводником электричества, если же нет – изолятором.
  5. Следующая таблица может служить примером того, как можно записать результаты опытов.
Бытовой предмет Проводник Изолятор
Скрепка X
Деревянная ложка X
Монета
Резиновая лопатка

Вывод:

Каксоздать простую замкнутую цепь? Какэлектричество протекает через цепь?Какие бывают проводники? Какие бываютизоляторы? Как работают проводники иизоляторы в доме, чтобы защитить отудара током?

Пробой диэлектрика

При всех указанных явлениях в диэлектрике после приложения напряжения через больший или меньший промежуток времени создается стационарное или квазистационарное (при переменном напряжении) состояние, характеризуемое устойчивыми во времени значениями поляризации, электропроводности или соответственно диэлектрических потерь. Однако, если увеличивать напряженность поля, то имеется некорый предел, выше которого стационарное состояние нарушается. Текущий через него ток начинает ускоренно возрастать во времени, электропроводность резко увеличивается, вещество перестает быть диэлектриком и становится проводником, происходит пробой.

Характеризующее пробой прогрессирующее во времени возрастание электропроводности может находиться в зависимости от рода вещества и его агрегатного состояния, а также таких факторов, как температуpa, вид напряжения, длительность воздействия напряжения и т. д., и обусловлено различными явлениями. Эти явления могут быть сведены в две основные группы:

  1. явления тепловые: возрастание электропроводности обусловлено прогрессирующим разогревом диэлектрика, выделяющимися в нем потерями; пробой наступает тогда, когда стационарное тепловое состояние его становится невозможным;
  2. явления чисто электрические: возрастание электропроводности обусловлено увеличением числа свободных зарядов в результате либо ударной ионизации, т. е. срыва связанных зарядов движущимися зарядами, либо срыва связанных зарядов непосредственно самим полем.

Диэлектрики находят широкое применение в технике как электроизолирующие материалы.

Направление электрического тока.

В диэлектриках имеет место так называемый ТОК СМЕЩЕНИЯ, который возникает в результате смещения электронов в атомах под действием сил внешнего электрического поля. В вакууме ток создается потоком электронов, вылетающих с поверхности металлического проводника, а в разряженных газах – потоком электронов и ионов. В обоих случаях направленное движение электронов и ионов также происходит под влиянием внешнего электрического поля. Таким образом, ЭЛЕКТРИЧЕСКИЙ ТОК в проводящих средах есть направленное движение потока свободных заряженных частиц под действием сил внешнего электрического поля.

Направление движение свободных электронов можно получить, соединив, например, один конец металлической проволоки с металлическим шаром, заряженным отрицательно, а другой – с шаром, заряженным положительно. Электроны, имеющиеся в избытке на отрицательно заряженном шаре, направляются к положительно заряженному шару с недостатком электронов, т.е. по проволоке пройдет электрический ток. Он будет течь до тех пор, пока разность потенциалов между разноименно заряженными шарами не станет равной нулю. В нашем примере это произойдет почти мгновенно. Если же разность потенциалов между этими шарами поддерживать постоянно, то по проволоке будет идти электрический ток постоянный по величине и направлению.

Примечания[править | править код]

  1. Quote from Encyclopædia Britannica: “Dielectric, insulating material or a very poor conductor of electric current. When dielectrics are placed in an electric field, practically no current flows in them because, unlike metals, they have no loosely bound, or free, electrons that may drift through the material.”
  2. Quote from Encyclopædia Britannica: “Dielectric, insulating material or a very poor conductor of electric current. When dielectrics are placed in an electric field, practically no current flows in them because, unlike metals, they have no loosely bound, or free, electrons that may drift through the material.”
  3. Arthur R. von Hippel, in his seminal work, Dielectric Materials and Applications, stated: “Dielectrics… are not a narrow class of so-called insulators, but the broad expanse of nonmetals considered from the standpoint of their interaction with electric, magnetic, or electromagnetic fields. Thus we are concerned with gases as well as with liquids and solids, and with the storage of electric and magnetic energy as well as its dissipation.” (Technology Press of MIT and John Wiley, NY, 1954).
  • Виртуальный фонд естественнонаучных и научно-технических эффектов «Эффективная физика»

Теги

ДиэлектрикОбучениеПроводникЭлектрический токЭлектричествоЭлектрон

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.

Свойства диэлектриков

Выбор диэлектриков должен осуществляться в соответствии с их свойствами:

  1. Электрическими: пробивное напряжение (при котором наступает пробой), электрическая прочность (напряженность поля, при которой наступает пробой);
  2. Физико-химическими: стойкость к нагреванию (способность длительно выдерживать рабочую температуру), холодостойкость (способность переносить перепады температур), смачиваемость (способность отторгать влагу);
  3. Химическими: устойчивость к агрессивной среде, растворимость в лаках, возможность склеивания;
  4. Механическими: радиационная устойчивость, вязкость (для жидких диэлектриков), защищенность от коррозии, предел прочности, возможность инструментальной обработки.

Газообразные диэлектрики

Наиболее распространенными газообразными диэлектриками являются воздух, азот, водород и элегаз. Электроизоляционные газы делятся на естественные и искусственные. К естественным относится воздух, которые применяется в качестве изоляции между токоведущими частями линий электропередач и электрических машин. В качестве изолятора воздух имеет недостатки, которые делает невозможным его использование в герметичных устройствах. Из-за наличия высокой концентрации кислорода воздух является окислителем, и в неоднородных полях проявляется низкая электрическая прочность воздуха.

В силовых трансформаторах и высоковольтных кабелях в качестве изоляции используют азот. Водород, кроме электроизоляционного материала, также представляет собой принудительное охлаждение, поэтому часто используется в электрических машинах. В герметизированных установках чаще всего применяют элегаз. Заполнение элегазом делает устройство взрывобезопасным. Применяется в высоковольтных выключателях благодаря своим дугогасящим свойствам.

Покрытия на нержавеющей стали

Сталь проводит ток или нет

Нержавеющая сталь — сплав железа с углеродом, преимущественно легированный большим количеством хрома и никеля. Из названия этого конструкционного материала понятно, что он находит основное применение в средах, вызывающих активную коррозию обычной стали. Так, нержавейка устойчива в промышленной атмосфере и воде, хорошо сопротивляется воздействию серной кислоты. В тоже время нержавеющая сталь плохо паяется, обладает достаточно низким коэффициентом трения, слабо проводит электрический ток, боится щелочей в отличие от углеродистой стали из-за присутствия в ней хрома. Однако все эти недостатки эффективно устраняются гальваническими покрытиями.

Я не электрик, но есть вопрос: если дотронуться до гайки, то обожгусь или получу электрический удар?

Перспективы применения бетэла

Электропроводящие бетоны характеризуются относительно низкой себестоимостью и технологической доступностью. Только в некоторых случаях их стоимость будет незначительно превышать цену обычных строительных бетонов. Этот факт объясняется использованием при изготовлении электропроводящих бетонных смесей и конечных ЖБК распространенных компонентов (вяжущих, добавок, заполнителей), а также применением освоенных промышленностью технологических процессов.

Бетэл может широко применяться для решения широкого спектра задач в гражданском и сельскохозяйственном строительстве. Например, из него могут изготавливаться панели перекрытий и стен, кровля с внутренним водостоком, полы, фундаменты опор ЛЭП и другие ЖБИ.

Электросетевая конструкция из бетона и бетэлаРисунок 4. Электросетевая конструкция из бетона и бетэла: а) ЭК с заземляющей оболочкой из бетона; б) ЭК с нижней частью целиком из бетэла: 1 – бетэл; 2 – арматура; 3 – строительный бетон; 4 – грунт.

При прохождении электротока бетэл, как и всякий другой проводник, подвергается нагреву. Это свойство может использоваться для монтажа электроотопительных элементов зданий. При этом в качестве основных нагревательных элементов можно использовать стандартные плиты перекрытий и стеновые панели, что не требует больших изменений технологической оснастки и конструкций этих элементов.

В случае применения электропроводящего бетона существует возможность замены сложных систем отопления, обеспечивается возможность обеспечения индивидуального микроклимата для жилых помещений, сокращаются сроки монтажа зданий, снижаются эксплуатационные расходы, принципиально изменяются технологии строительства отдельных узлов.

Сверхпроводимость

Также в природе существует и такой эффект, как сверхпроводимость. Сверхпроводимость – это когда некоторые материалы и их сплавы вообще не обладают сопротивлением. То есть их сопротивление очень и очень близко к нулю. Но, спешу вас разочаровать, в простых условиях это получить невозможно, так как это достигается только при критических температурах.

Если желаете больше узнать про материалы, которые используются в электронике и электротехнике, скачайте эту книгу.

Проводник (электрический проводник)

Как получить электрический ток?

Для получения электрического тока существуют специальные устройства, которые непрерывно поддерживают разность потенциалов на концах проводника. Эти устройства обычно называются ИСТОЧНИКАМИ ТОКА или ИСТОЧНИКАМИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ. Основными источниками тока являются:

  • Механические источники электрического тока – ЭЛЕКРИЧЕСКИЕ ГЕНЕРАТОРЫ, в которых механическая энергия преобразуется в электрическую.
  • Химические источники электрической энергии – ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ И АККУМУЛЯТОРЫ. В них химическая энергия преобразуется в электрическую.
  • Тепловые источники электроэнергии – ТЕРМОЭЛЕМЕНТЫ, в которых тепловая энергия преобразуется в электрическую.
  • В настоящее время также находят применение лучистые и атомные источники электрической энергии. Сначала в электрическую энергию преобразуется световая, а затем – ядерная энергия.

Независимо от того, по какому принципу работает тот или иной источник электрического тока, в каждом из них происходит процесс разделения электрических зарядов физических тел и вместе с тем процесс преобразования какого-либо вида энергии в электрическую.

Сегодня уже нет смысла рассуждать о пользе электричества. Оно используется повсеместно. Поэтому просто необходимо понимать природу этого явления, чтобы оно не причинило ущерб. Нужно принимать все меры предосторожности, чтобы не возникло короткого замыкания, вследствие которого может произойти пожар. И, конечно, надо быть крайне аккуратными, чтобы не получить удар электричеством, так как поражение электрическим током может быть смертельно опасным для жизни.

Во избежании неприятностей и опасных ситуаций для подключения или ремонта электропроводки вызывайте профессионального мастера. Созвонитесь с нашим оператором и закажите вызов электрика в Юбилейный или воспользуйтесь услугами электрика в городе Мытищи. А если нужен электромонтаж в Сергиевом Посаде в квартире или деревянном доме, то пригласите мастера-оценщика для составления сметы, а также посмотрите видео по электрике, выполненной нашими мастерами.

Если материал этой статьи был для вас интересен и полезен, поделитесь им со своими знакомыми в социальных сетях. Возможно, кому-то эта информация очень пригодится. C уважением, Королевский электрик в Щёлково.

Так как же все-таки соединять провода?

Вопрос сложный тем, что ответ зависит от условий работы соединения и однозначно универсального способа нет.

Но про пару алюминий-медь было сказано столько плохого, что я просто обязан дать ответ на вопрос “как их соединять?”.

Первый вариант — классический, при помощи стальной пластинки исключая непосредственный контакт меди и алюминия. Стальная пластинка предотвратит интенсивную электрохимическую коррозию (но не избавит от нее совсем), обеспечит приемлемое усилие на площади контакта проводников. Но такое соединение требует регламентных работ по обслуживанию: 1–2 раза в год необходимо проверять усилие затяжки проводников.

Второй вариант. Специализированные пружинные клеммы для алюминиевого проводника. (например клеммники WAGO серии 2273 с пастой). В такой клемме зачищенный проводник всё время прижимается пружинным контактом, предотвращая его ослабление вследствие ползучести. Паста внутри клеммника предотвращает доступ влаги и воздуха к поверхности алюминия, препятствуя окислению проводника. (Важно отметить, клеммы должны быть качественные, а сечение проводника номинальным. Самолично наблюдал сгоревшие соединения выполненные клеммами, купленными в ближайшем киоске (вероятно поддельными)).

Третий вариант — Медно-алюминиевые гильзы. Этот вид соединения актуален для силовых линий на большие токи с сечением от 10 кв. мм. Медно-алюминиевые гильзы  предназначены под опрессовку специальным инструментом. Соединенные в толще металлы обеспечивают надежный контакт большой площади, влага и электрохимическая коррозия могут лишь повредить нежную поверхность гильзы, не нарушив контакт в толще.

Обзор цен

Сколько стоит токопроводящий клей Контактол-Keller в разных городах России, Беларуси и Украины:

Город Цена за 100 грамм (примерная)
Владикавказ 155
Екатеринбург 150
Киев 145
Краснодар 160
Красноярск 166
Минск 158
Москва 150
Омск 170
Самара 175
Харьков 156
Санкт-Петербург 160

Перед покупкой обязательно проверяйте сертификат продавца, это очень важно, иначе можете купить подделку.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...