Таблица веса алюминия в кабеле силовом АВВГ

Вес алюминия в токопроводящих жилах различных марок кабеля АВВГ
Таблицы веса меди и алюминия в кабелях и проводах.
Формула расчета веса меди, алюминия в кг на 1 км длины кабеля, провода:
где,
плотность меди = 8,9
плотность алюминия = 2,7
Например: Вес меди в 1 км кабеля ВВГ 3х1,5 = 3*1,5*8,9 = 40,05 кг в 1км.
Таблица веса меди в кабеле силовом ВВГ.
Наименование кабеля Вес меди, кг/км
Кабель ВВГ 2х1.5 | 21,36 |
Кабель ВВГ 2х2.5 | 44,50 |
Кабель ВВГ 2х4 | 71,20 |
Кабель ВВГ 2х6 | 106,80 |
Кабель ВВГ 2х10 | 178,00 |
Кабель ВВГ 3х1.5 | 40,05 |
Кабель BBГ 3х2.5 | 66,75 |
Кабель ВВГ 3х4 | 106,80 |
Кабель ВВГ 3х6 | 160,20 |
Кабель ВВГ 3х10 | 267,00 |
Кабель ВВГ 4х1.5 | 53,40 |
Кабель ВВГ 4х2.5 | 89,00 |
Кабель ВВГ 4х4 | 142,40 |
Кабель ВВГ 4х6 | 213,60 |
Кабель ВВГ 4х10 | 356,00 |
Кабель ВВГ 4х16 | 569,60 |
Кабель ВВГ 4х25 | 890,00 |
Кабель ВВГ 4х35 | 1 246,00 |
Кабель ВВГ 4х50 | 1 780,00 |
Кабель ВВГ 5х1.5 | 66,75 |
Кабель ВВГ 5х2.5 | 111,25 |
Кабель ВВГ 5х4 | 178,00 |
Кабель ВВГ 5х6 | 267,00 |
Кабель ВВГ 5х10 | 445,00 |
Кабель ВВГ 5х16 | 712,00 |
Кабель ВВГ 5х25 | 1 112,50 |
Кабель ВВГ 5х35 | 1 557,50 |
Кабель ВВГ 5х50 | 2 225,00 |
О форуме
© «РусКабель», 1999-2020
Все права защищены и охраняются законом. Администрация RusCable.Ru не несет ответственности за высказывания третьих лиц. Мнение редакции может не совпадать с мнением авторов материалов. 18+
Перепечатка информации возможна только при соблюдении следующих условий.
Редакция портала
111123, Москва, Электродный проезд, д.8а, оф.18
Телефон: +7 495 229 33 36 (мнк)
Viber/WhatsApp/Telegram: +7 999 003 33 36
E-mail: mail@ruscable.ru
О портале
Контакты
8 800 500 75 76
Общаешься на форуме? Зарегистрируйся!
Только для зарегистрированных пользователей «Кабельного форума» RusCable.Ru доступны следующие возможности:
— Получение КАБСов за общение на форуме;
— Отправка личных сообщений пользователям;
— Сохранять в «Избранном» интересные темы;
— и многое другое.
Регистрация предельно простая и займет не более 2 минут.
Вход для зарегистрированных пользователей:
Наименование кабеля Вес алюминия, кг/км
Кабель АВВГ 2х2.5 | 13,50 |
Кабель АВВГ 2х4 | 21,60 |
Кабель АВВГ 2х6 | 32,40 |
Кабель АВВГ 2х10 | 54,00 |
Кабель АВВГ 2х16 | 86,40 |
Кабель АВВГ 3х2.5 | 20,25 |
Кабель АВВГ 3х4 | 32,40 |
Кабель АВВГ 3х6 | 48,60 |
Кабель АВВГ 3х10 | 81,00 |
Кабель АВВГ 3х16 | 129,60 |
Кабель АВВГ 3х4+1х2.5 | 39,15 |
Кабель АВВГ 3х6+1х4 | 59,40 |
Кабель АВВГ 3х10+1х6 | 97,20 |
Кабель АВВГ 3х16+1х10 | 156,60 |
Кабель АВВГ 3х25+1х16 | 47,25 |
Кабель АВВГ 3х35+1х16 | 326,70 |
Кабель АВВГ 3х50+1х25 | 472,50 |
Кабель АВВГ 3х70+1х35 | 661,50 |
Кабель АВВГ 3х95+1х50 | 904,50 |
Кабель АВВГ 3х120+1х70 | 1 161,00 |
Кабель АВВГ 3х150+1х70 | 1 404,00 |
Кабель АВВГ 3х185+1х95 | 1 755,00 |
Кабель АВВГ 3х240+1х120 | 2 268,00 |
Кабель АВВГ 4х2.5 | 27,00 |
Кабель АВВГ 4х4 | 43,20 |
Кабель АВВГ 4х6 | 64,80 |
Кабель АВВГ 4х10 | 108,00 |
Кабель АВВГ 4х16 | 172,80 |
Кабель АВВГ 4х25 | 270,00 |
Кабель АВВГ 4х35 | 378,00 |
Кабель АВВГ 4х50 | 540,00 |
Кабель АВВГ 4х70 | 756,00 |
Кабель АВВГ 4х95 | 1 026,00 |
Кабель АВВГ 4х120 | 1 296,00 |
Кабель АВВГ 4х150 | 1 620,00 |
Кабель АВВГ 4х185 | 1 998,00 |
Кабель АВВГ 4х240 | 2 592,00 |
Таблица веса меди в проводе ПВС

Содержание меди в проводе ПВС
Недостатки
Алюминиевая проводка характеризуется высоким удельным электрическим сопротивлением. Это сопротивление равняется 0,0271 Ом х кв.мм/м. Учитывая данный факт, в новейших редакциях ПУЭ отмечается, что в квартире или доме можно использовать только ту алюминиевую проводку, поперечное сечение которой превышает 16 кв. миллиметров.
В конечном итоге получается так, что для обеспечения необходимого уровня пропускной способности нужно использовать кабель с большим сечением. Другими словами нужно монтировать проводку, которая имеет большую толщину. Если сравнивать проводку из меди, то она обладает таким удельным электрическим сопротивлением, которое равняется 0,0175 Ом х кв.мм/м.
Такая проводка более эффективная и для использования в доме можно брать медный кабель с меньшим поперечным сечением. Как уже было отмечено выше, алюминий способен окисляться и пленка, образующаяся во время этого процесса, имеет плохую токопроводимость. Здесь есть еще один нюанс: эта пленка образуется из верхней части провода. В результате происходит небольшое уменьшение его поперечного сечения, а в результате растет сопротивление.
Так как пленка на алюминиевой проводке обладает высоким сопротивлением, то в местах соединения отдельных частей проволоки растет переходное сопротивление. Вследствие этого проявляется в нагревании проводки в таких местах. В тех ситуациях, когда возрастает нагрузка на алюминиевую проводку, она начинает нагреваться. Если провод обладает достаточным поперечным сечением, то ничего страшного нет. Однако если проводка не рассчитана на такую нагрузку или используется больше своего нормированного срока эксплуатации, то это обязательно приводит к ее нагреву.
Последний факт можно назвать очень плохим для мест соединения. Дело в том, что при нагревании алюминия происходит изменение его формы и пластичности. Конечно, проволока расширяется. После того, как нагрузка исчезла и кабель остыл, он набирает привычной формы. Однако после неоднократного повторения таких процессов происходит ослабление контакта концов электропроводов.
Алюминий также обладает высокой хрупкостью. Она сильно возрастает после того, как он перегревается. Что касается срока службы, то для алюминиевой проводки он составляет 25 лет. После этого нужно устанавливать другой тип проводки.
Таблица веса: кабель ВБбШв.
НаименованиеВес 1 км кабеля, 660 ВВес 1 км кабеля, 1000 ВКабель ВБбШв 2×1,5274 кгКабель ВБбШв 2×2,5286 кг306 кгКабель ВБбШв 2×4346 кг385 кгКабель ВБбШв 2×6406 кг447 кгКабель ВБбШв 2×10552 кг566 кгКабель ВБбШв 2×16755 кг761 кгКабель ВБбШв 2×25992 кг1009 кгКабель ВБбШв 2×351445 кг1473 кгКабель ВБбШв 2×501837 кг1867 кгКабель ВБбШв 2×702425 кгКабель ВБбШв 2×953200 кгКабель ВБбШв 2×1203823 кгКабель ВБбШв 2×1504856 кгКабель ВБбШв 3×1,5306 кгКабель ВБбШв 3×2,5325 кг349 кгКабель ВБбШв 3×4403 кг449 кгКабель ВБбШв 3×6484 кг532 кгКабель ВБбШв 3×10676 кг694 кгКабель ВБбШв 3×16949 кг959 кгКабель ВБбШв 3×251282 кг1304 кгКабель ВБбШв 3×351790 кг1820 кгКабель ВБбШв 3×502296 кг2330 кгКабель ВБбШв 3×2,5+1×1,5363 кг398 кгКабель ВБбШв 3×4+1×2,5454 кг503 кгКабель ВБбШв 3×6+1×4554 кг611 кгКабель ВБбШв 3×10+1×6759 кг797 кгКабель ВБбШв 3×16+1×101082 кг1094 кгКабель ВБбШв 3×25+1×161527 кг1554 кгКабель ВБбШв 3×35+1×161986 кг2020 кгКабель ВБбШв 3×50+1×252587 кг2624 кгКабель ВБбШв 3×70+1×353289 кгКабель ВБбШв 3×95+1×504277 кгКабель ВБбШв 3×120+1×705257 кгКабель ВБбШв 3×150+1×706213 кгКабель ВБбШв 3×185+1×957603 кгКабель ВБбШв 3×240+1×1209649 кгКабель ВБбШв 4×1,5314 кг347 кгКабель ВБбШв 4×2,5367 кг401 кгКабель ВБбШв 4×4469 кг525 кгКабель ВБбШв 4×6572 кг630 кгКабель ВБбШв 4×10815 кг836 кгКабель ВБбШв 4×161163 кг1188 кгКабель ВБбШв 4×251618 кг1646 кгКабель ВБбШв 4×352196 кг2232 кгКабель ВБбШв 4×502834 кг2874 кгКабель ВБбШв 4×703654 кгКабель ВБбШв 4×954770 кгКабель ВБбШв 4×1205784 кгКабель ВБбШв 4×1507022 кгКабель ВБбШв 4×1858503 кгКабель ВБбШв 4×24010940 кг
Основные свойства
Выплавка меди из руды
Медь, как металл, получается при выплавке руды, в природе сложно найти чистые самородки в основном обогащение и добыча осуществляется из:
- халькозиновой руды, в которой содержание меди около 80%, этот вид часто называют медным блеском;
- бронитовой руды, здесь содержание металла до 65%
- ковеллиновой руды — до 64%.
По своим физическим свойствам медь представляет собой красного цвета металл, в разрезе может присутствовать розовый отлив, относится к тяжелым металлам, поскольку имеет высокую плотность.
Отличительной характеристикой является электропроводность. Благодаря этому металл широко применяется при изготовлении кабелей и электропроводов. По этому показателю медь уступает только серебру, кроме того, имеется ряд других физических характеристик:
- твердость — по шкале Бринделя равняется 35 кгс/мм²;
- упругость — 132000 Мн/м²;
- линейное термическое расширение — 0,00000017 единицы;
- относительное удлинение — 60%;
- температура плавления — 1083 ºС;
- температура кипения — 2600 ºС;
- коэффициент теплопроводности — 335 ккал/м*ч*град.
К основным свойствам меди относят показатель модулей упругости, которые рассчитываются различными методами:
Марка меди | Модуль сдвига | Модуль Юнга | Коэффициент Пуассона |
Медь холоднотянутая | 4900 кг/мм² | 13000 кг/мм² | — |
Медь прокатная | 4000 | 11000 кг/мм² | 0,31 — 0,34 |
Медь литая | — | 8400 | — |
Модуль сдвига полезно знать при производстве материалов для строительной отрасли — это величина, которая характеризует степень сопротивление сдвигу и деформации под воздействием различных нагрузок. Модуль, рассчитанный по методике Юнга, показывает как будет вести себя металл при одноосном растяжении. Модуль сдвига характеризует отклик металла на сдвиговую нагрузку. Коэффициент Пуассона показывает как ведет себя материал при всестороннем сжатии.
Разработка рудников по добычи меди и других металлов
Химические свойства меди описывают соединение с другими веществами в сплавы, возможные реакции на кислотную среду. Наиболее значимой характеристикой является окисление. Этот процесс активно проявляется во время нагревания, уже при температуре 375 ºС начинает формироваться оксид меди, или как его называют окалина, которая может влиять на проводниковые функции металла, снижать их.
При взаимодействии меди с раствором соли железа она переходит в жидкое состояние. Этот метод используют для того чтобы снять медное напыление на различных изделиях.
Долгое пребывание в воде вызывает куприт
При длительном воздействии на медь влажной среды на ее поверхности образуется куприт — зеленоватый налет. Это свойство меди учитывают при использовании метала для покрытия крыш. Примечательно, что куприт выполняет защитную функцию, металл под ним совершенно не портится, даже на протяжении ста лет. Единственными противниками крыш из медного материала являются экологи. Свою позицию они объясняют тем, что при смыве куприта меди дождевыми водами в почву или водоемы, он загрязняет ее своими токсинами, особенно это пагубно влияет на микроорганизмы, живущие в реках и озерах. Но для решения этой проблемы строители используют водосточные трубы из специального металла, который поглощает медные частицы в себя и накапливает, при этом вода стекает очищенной от токсинов.
Медный купорос — еще один результат химического воздействия на металл. Это вещество активно используют агрономы для удобрения почвы и стимулирования роста различных сельскохозяйственных культур. Однако бесконтрольное использование купороса может также пагубно влиять на экологию. Токсины проникают глубоко в слои земли и накапливаются в подземных водах.
Цены на прием лома медного кабеля
Стоимость медного кабеля варьируется в зависимости от процентного содержания меди в сдаваемом сырье, а также от качества и объема металла.
Точную цену лома можно узнать после проведения анализа образца на специальном оборудовании — анализаторе металлов и сплавов.
В прайсах предприятий, осуществляющих прием лома, стоит, как правило, цена за чистый металл, освобожденный от:
- изоляции;
- смазки;
- краски и т.д.
Для определения стоимости лома на пункте сдачи производится срезка опытного образца, который очищается от оплетки и взвешивается. Таким способом определяют количество металла в полученной партии, без учета массы изоляции.
Средние цены на разные виды лома медного кабеля представлены в таблице:
Вид лома | Описание | Цена/диапазон цен (руб. за кг.) |
Медный кабель | С выходом меди от 70% | 260 — 300 |
Медный кабель | В изоляции | 220 — 280 |
Медь «масло» | лом кабеля, очищенный от оплетки механическим способом. Не имеет окислов, потемнений, в масле. Недопустимо наличие лака, клемм, остатков изолирующего материала, краски, грязи, бумаги и т. д. | 200-298 |
Медь «микс» | Токопроводники, телефонный медный провод, проволока, кабель, детали агрегатов, гибкие шины «косички». Допускается покрытие лаком, краской, а также наличие окислов. | 230 — 285 |
Обожженная медь | Лом медной жилы сечения любой формы, прошедший термическую обработку. В сырье не должны присутствовать следы окисления, наконечники, масло, частицы изолирующего материала. | 280 — 300 |
Медь «блеск» | Очищенные от изоляции медные провода и кабели. Каждая жила блестящая, не имеет окислов, потемнений, плёнок, следов масла и лака, а также остатков изоляции. Цена зависит от диаметра сечения жилы. | 240 — 318 |
Как быть с длиной
Если вы считаете кабель по квартире или небольшому дому, то поправки на длину кабеля можно вообще не делать – вряд ли у вас будут ветки длиной от 100 и более метров. Но если вы прокладываете проводку в крупном многоэтажном коттедже или торговом центре, то нужно обязательно закладывать возможные потери на длину. Обычно они составляют 5 процентов, но правильнее рассчитывать их по таблице и формулам.
Так, момент нагрузки считается в виде произведения длины вашего провода на суммарную мощность потребления. То есть длина вашего кабеля вычисляется как произведение длины кабеля в метрах на мощность в киловаттах.
В приведенной ниже таблице мы видим, как зависят потери от сечения проводника. К примеру, кабель толщиной 2,5 мм2 с нагрузкой до 3 кВт и длиной в 30 метров имеет потери 30х3=90, то есть 3%. Если уровень потерь переваливает за 5%, то рекомендуется выбирать более толстый кабель – не нужно экономить на своей безопасности.
U, % | Момент нагрузки, кВт*м | |||||
1,5 | 2,5 | 4 | 6 | 10 | 16 | |
1 | 18 | 30 | 48 | 72 | 120 | 192 |
2 | 36 | 60 | 96 | 144 | 240 | 384 |
3 | 54 | 90 | 144 | 216 | 360 | 575 |
4 | 72 | 120 | 192 | 288 | 480 | 768 |
5 | 90 | 150 | 240 | 360 | 600 | 960 |
Данная таблица нагрузок по сечению кабеля справедлива для однофазной сети. Для трехфазной характерно увеличение величины нагрузки в среднем в шесть раз. В три раза поднимается значение за счет распределения по трем фазам, в два – за счет нулевого проводника. Если нагрузка на фазы неодинакова (имеются сильные перекосы), то потери и нагрузки сильно увеличиваются.
Правильное подключение автоматов медным кабелем
Также следует учитывать, какие именно потребители будут подключены к вашему проводу. Если вы планируете подключать галогеновые низковольтные лампы, то старайтесь размещать их как можно ближе к трансформаторам. Почему? Потому что при падении напряжения на 3 вольта при 220 вольт мы просто не заметим, а при падении на те же 3 вольта при 12 вольт лампы просто не загорятся.
Если вы проводите выбор сечения провода по току для алюминиевого кабеля, то учитывайте, что сопротивление материала в 1,7 раз выше, чем у меди. Соответственно, потери в них будут больше в эти же 1,7 раза.
Применение ВВГ 1х240
- Кабели предназначены для передачи и распределения электроэнергии в стационарных электротехнических установках на номинальное переменное напряжение 0,66 и 1 кВ номинальной частотой 50 Гц
- Для прокладки без ограничения разности уровней по трассе прокладки, в том числе на вертикальных участках
- Для эксплуатации в электрических сетях переменного напряжения с заземлённой или изолированной нейтралью, в которых продолжительность работы в режиме однофазного короткого замыкания на землю не превышает 8 часов, а общая продолжительность работы в режиме однофазного короткого замыкания на землю не превышает 125 часов за год
- Для одиночной прокладки в кабельных сооружениях и производственных помещениях. Групповая прокладка разрешается только в наружных электроустановках и производственных помещениях, где возможно лишь периодическое присутствие обслуживающего персонала, при этом необходимо применять пассивную огнезащиту
- Класс пожарной опасности по ГОСТ 31565-2012: О1.8.2.5.4
Медный кабель и аспекты его эксплуатации.
В качестве проводки для жилых или промышленных зданий, согласно инструкциям контролирующих органов, использовать рекомендуется многожильные кабели из меди. У строителей наибольшим спросом пользуются изделия марки ВВГ, представляет собой данный тип проводки изделие с двойной ПВХ изоляцией. Он может в зависимости от общего сечения применяться на тех участках, где нагрузка на медный кабель будет составлять от двойной ПВХ изоляцией. Проверить сопротивление медного кабеля можно даже и в домашних условиях, понадобится для этого прибор SmartClass ADSL, предназначенный для измерения различных параметров проводки.
Медный кабель с резиновой изоляцией типа КГ также пользуется большой популярностью, он имеет прекрасную гибкость, благодаря наличию внутри множества медных проволочек. Специальные добавки внедрены в состав изоляции КГ, для использования в условиях вечной мерзлоты данного типа проводки.
Кабель канал
Кабельные каналы – это электромонтажные короба, используемые для прокладки различных по уровню напряжения и предназначению линий (от силовых высоковольтных линий до кабельных каналов связи). В зависимости от материала изготовления бывают металлическими и пластиковыми.
Прокладывают короба, как по горизонтальным (пол, потолок), так и по вертикальным (стены) поверхностям. Для защиты размещаемой в них проводки от воздействия окружающей среды каналы закрывают специальными крышками.
Комментарии
Комментариев пока нет
Пожалуйста, авторизуйтесь, чтобы оставить комментарий.
Разделы статей
- Игровые комплексы
- Игровое оборудование
- Уличные тренажеры
- Малые архитектурные формы
- Спортивное оборудование
- Воркаут
- Лазерная резка металла
- ГОСТы
- Виды стали
- Типовые проеты
- Прочее
- Электрика
- Каталоги
- Метизы
Диаметр кабеля
Данная характеристика кабельной продукции измеряется по наружной оболочке. На значение диаметра оказывают влияние такие конструктивные особенности проводника, как толщина наружной изоляции, количество и площадь поперечного сечения токопроводящих жил. Колеблется наружный диаметр от 5-5,5 до 80-100 мм.
Таким образом, используя, как онлайн калькулятор кабеля, так и расчет его веса и сечения по приведенным выше методикам, можно самостоятельно рассчитать количество и подобрать марку проводов (ВВГ, АВВГ ВБбШв, ПВС и т.д.), необходимых для подключения коттеджа или загородного дома к ближайшей линии электропередач.
Медные обмоточные провода
Предназначены для изготовления обмоток трансформаторов, дросселей, электромагнитных реле, катушек колебательных контуров и т. п. Эти провода могут иметь покрытие (изоляцию) из эмали, волокнистых материалов или комбинированное покрытие из эмали и волокнистых материалов. Эмаль обладает лучшими электроизоляционными свойствами, чем волокнистые материалы, по этому эмалированные провода имеют меньшие диаметры, чем провода с изоляцией из волокнистых материалов.
Типы наиболее часто применяемых проводов приведены в таблице 1.
Основные параметры наиболее часто применяемых медных обмоточных проводов приведены в таблице 3.
Таблица 1. Типы наиболее часто применяемых проводов.
Марка | Характеристики изоляции | Максимально допустимая температура С* | Диаметр медной жилы в мм |
ПКР-1 | Провод со сплошной Капроновй изоляцией | 105 | 0,72 – 2,44 |
ПКР-2 | Провод со сплошной Капроновй изоляцией утолщенной | 105 | 0,72 – 2,44 |
ПЛБД | Провод с обмоткой из шелка Лавсан и хлопчато-Бумажной пряжи в Два слоя | 105 | 0,38 – 4,10 |
ПЛД | Провод с обмоткой из шелка Лавсан в Два слоя | 120 | 0,38 – 1,30 |
ПСД | Провод с обмоткой из Стекловолокна в Два слоя с подклейкой и пропиткой нагревостойким лаком | 155 | 0,31 – 4,80 |
ПСДК | Провод с обмоткой из Стекловолокна в Два слоя с подклейкой и пропиткой Кремнийорганическим лаком | 180 | 0,31 – 4,80 |
ПСДКТ | Провод с обмоткой из Стекловолокна в Два слоя с подклейкой и пропиткой Кремнийорганическим лаком, Теплостойкий | 300 | 0,31 – 1,56 |
ПЭВ | Провод, изолированный Эмалевым Высокопрочным покрытием | 105 | 0,02 – 0,05 |
ПЭВ-1 | Провод, изолированный Эмалевым Высокопрочным покрытием один слой | 105 | 0,06 – 0,47 |
ПЭВ-2 | Провод, изолированный Эмалевым Высокопрочным покрытием два слоя | 105 | 0,06 – 0,47 |
ПЭВД | Провод, изолированный одним слоем высокопрочной эмали с дополнительным термопластичным покрытием | 105 | 0,2 – 0,5 |
ПЭВКЛ | Провод, изолированный Эмалевым Высокопрочным покрытием на основе Капронового Лака | 105 | 0,1 – 0,15 |
ПЭВЛО | Провод, изолированный Эмалевым Высокопрочным покрытием и Однослойной обмоткой из шелка Лавсан | 105 | 0,06 – 1,3 |
ПЭТВЛ-1 | Провод, изолированный Эмалевым Высокопрочным Теплоснойким покрытием в один слой на основе полиуретанового Лака (провод облуживается без предварительной зачистки эмали и без применения травильных составов) | 120 | 0,06 – 1,56 |
ПЭТВЛ-2 | Провод, изолированный Эмалевым Высокопрочным Теплоснойким покрытием в два слоя на основе полиуретанового Лака (провод облуживается без предварительной зачистки эмали и без применения травильных составов) | 120 | 0,06 – 1,56 |
ПЭЛ | Провод с Эмалевым Лакостойким покрытием | 90 | 0,03 – 2,44 |
ПЭЛКО | Провод с Эмалевым Лакостойким покрытием и Однослойной обмоткой из капронового волокна | 105 | 0,2 – 2,10 |
ПЭЛО | Провод с Эмалевым Лакостойким покрытием и Однослойной обмоткой из шелка Лавсан | 105 | 0,05 – 2,10 |
ПЭЛР-1 | Провод с покрытием в один слой высокопрочной полиамидной эмали | 120 | 0,1 – 2,44 |
ПЭЛР-2 | То же в два слоя | 120 | 0,1 – 2,44 |
ПЭЛУ | Провод с лакостойкой эмалью, утолщенный слой | 105 | 0,05 – 2,44 |
ПЭЛШКО | Провод с лакостойкой эмалью и обмоткой из капронового волокна | 105 | 0,1 – 1,56 |
ПЭЛШО | Провод с Эмалевым Лакостойким покрытием и Однослойной Шелковой обмоткой | 90 | 0,05 – 1,56 |
ПЭМ-1 | Провод с Эмалевым высокопрочным покрытием лаком Металвин один слой | 105 | 0,06 – 2,44 |
ПЭМ-2 | Провод с Эмалевым высокопрочным покрытием два слоя лаком Металвин | 105 | 0,06 – 2,44 |
ПЭМ-3 | Провод с Эмалевым высокопрочным покрытием три слоя лаком Металвин | 105 | 0,06 – 2,44 |
ПЭПЛО | Провод с Эмалевым высокопрочным и нагревостойким покрытием и Однослойной обмоткой из шелка Лавсан (провод облуживается без предварительной зачистки эмали и без применения травильных составов) | 120 | 0,06 – 1,30 |
ПЭТВ | Провод с Эмалевым Теплостойким Высокопрочным покрытием | 130 | 0,06 – 2,44 |
ПЭТВ-Р | Провод с Эмалевым Теплостойким Высокопрочным покрытием для обмоток Реле | 200 | 0,02 – 0,20 |
ПЭТК | Теплостойкая эмаль | – | 0,05 – 0,51 |
ПЭТЛО | Провод с Эмалевым Теплостойким покрытием и Однослойной обмоткой из шелка Лавсан | 105 | 0,06 – 1,30 |
ПЭТ-155 | Провод Эмалированный Теплостойкий полиэфиримидным лаком | 155 | 0,06 – 2,44 |
СБ, СБл, СБ2л, СБГ, СБ2лГ, ЦСБ, ЦСБл, ЦСБ2л, ЦСБГ
Напряжение, U (Uo/U) кВ | Число жил, номинальное сечение, мм2 | Форма сечения жилы | Наружный диаметр кабеля, мм | Масса кабеля, кг/км |
---|---|---|---|---|
1 (1/1) | 3×35 | ож* SE* | 28,3 | 2438 |
3х50 | 30,3 | 2945 | ||
3х70 | SM | 34,9 | 4005 | |
3х95 | 38,3 | 5086 | ||
3х120 | 41,6 | 6133 | ||
3х150 | 44 | 7500 | ||
3х50+1х25 | SE/RE* | 32,4 | 3389 | |
3х70+1х35 | SM/SE* | 37,6 | 4693 | |
3х95+1х50 | SM/SE* | 41,7 | 6001 | |
3х120+1х70 | SM/SM | 46,3 | 7384 | |
3х150+1х70 | SM/SM | 48 | 8346 | |
6 (6/6) | 3×35 | ож* SE* | 34,6 | 3212 |
3х50 | 36,6 | 3779 | ||
3х70 | SM | 41,2 | 4963 | |
3х95 | 44,5 | 6057 | ||
3х120 | 47,1 | 7064 | ||
3х150 | 49,4 | 8274 | ||
10 (10/10) | 3×35 | ож* SE* | 38,6 | 3782 |
3х50 | 40,5 | 4309 | ||
3х70 | SM | 45,1 | 5547 | |
3х95 | 48,5 | 6732 | ||
3х120 | 51,1 | 7774 | ||
3х150 | 53,3 | 9057 |