Что гласит закон Кулона?

Содержание

Законы электромагнетизма‎

Известно, что каждое заряженное тело имеет электрическое поле. Можно также утверждать, что если есть электрическое по­ле, то есть заряженное тело, которому при­надлежит это поле. Итак, если рядом нахо­дятся два заряженных тела с электриче­скими зарядами, то можно сказать, что каж­дое из них находится в электрическом поле соседнего тела. А в таком случае на первое тело будет действовать сила

F1 = q1E2,

где q1 — заряд первого тела; E2 — напря­женность поля второго тела. На второе те­ло, соответственно, будет действовать сила

F2 = q2E1,

где q2 — заряд первого тела; E1 — напря­женность поля второго тела.

Электрически заряженное те­ло взаимодействует с элект­рическим полем другого заря­женного тела.

Если эти тела небольшие (точечные), то

E1 = k • q1 / r2,

E2 = k • q2 / r2,

Силы, действующие на каждое из взаимодействующих заря­женных тел, можно рассчи­тать, зная лишь их заряды и расстояние между ними.

Подставим значения напряженности и получим

F1 = k • q1q2 / r2 и F2 = k • q2q1 / r2.

Значение каждой силы выражается лишь через значение зарядов каждого тела и рас­стояние между ними. Таким образом, опре­делять силы, действующие на каждое тело, можно, пользуясь лишь знаниями об элект­рических зарядах тел и расстоянии между ними. На этом основании можно сформу­лировать один из фундаментальных законов электродинамики — закона Кулона.

Закон Кулона. Сила, действующая на неподвижное то­чечное тело с электрическим зарядом в поле другого неподвижного точечного тела с элект­рическим зарядом, пропорциональна произве­дению значений их зарядов и обратно пропор­циональна квадрату расстояния между ними.

В общем виде значение силы, о которой идет речь в формулировке закона Кулона, можно записать так:

F = k • q1q2 / r2,

В формуле для расчета силы взаимодей­ствия записаны значения зарядов обоих тел. Поэтому можно сделать вывод, что по мо­дулю обе силы равны. Тем не менее, по направлению — они противоположные. В слу­чае если заряды тел одноименные, тела от­талкиваются (рис. 4.48). Если заряды тел раз­ноименные, то тела притягиваются (рис. 4.49). Окончательно можно записать:

F̅1 = -F̅2.

Рис. 4.48. Силы взаимодействующих од­ноименно заряженных тел имеют про­тивоположные направления.
Рис. 4.49. Силы взаимодействующих раз­ноименно заряженных тел имеют про­тивоположные направления.

Записанное равенство подтверждает спра­ведливость III закона динамики Ньютона для электрических взаимодействий. Поэтому в одной из распространенных формулиро­вок закона Кулона говорится, что

сила взаи­модействия двух заряженных точечных тел пропорциональна произведению значений их за­рядов и обратно пропорциональна квадрату расстояния между ними.

Если заряженные тела находятся в ди­электрике, то сила взаимодействия будет зависеть от диэлектрической проницаемости этого диэлектрика

F = k • q1q2 / εr2.

Для удобства расчетов, базирующихся на законе Кулона, значение коэффициента k записывают иначе:

k = 1 / 4πε0.

Величина ε0 называется электрической по­стоянной. Ее значение вычисляется в соот­ветствии с определением:

9 • 109 Н•м2/Кл2 = 1 / 4πε0,

ε0 = (1 / 4π) • 9 • 109 Н•м2/Кл2 = 8,85 • 10-12 Кл2/Н•м2. Материал с сайта http://worldofschool.ru

Таким образом, закон Кулона в общем случае можно выразить формулой

F = (1 / 4πε0) • q1q2 / εr2.

Закон Кулона является одним из фунда­ментальных законов природы. На нем бази­руется вся электродинамика, и не отмечено ни единого случая, когда бы нарушался закон Кулона. Существует единственное ог­раничение, которое касается действия за­кона Кулона на различных расстояниях. Счи­тается, что закон Кулона действует на рас­стояниях больше 10-16 м и меньше несколь­ких километров.

При решении задач необходимо учиты­вать, что закон Кулона касается сил вза­имодействия точечных неподвижных заря­женных тел. Это сводит все задачи к задачам о взаимодействии неподвижных заряженных тел, в которых применяется два положения статики:

  1. равнодействующая всех сил, действую­щих на тело, равна нулю;
  2. сумма моментов сил равна нулю.

В подавляющем большинстве задач на применение закона Кулона достаточно учи­тывать лишь первое положение.

0x20-magnifier.png На этой странице материал по темам:
  • Дискретность электрического заряда это делимость

  • Формулы для решения задач на закон кулона

  • Все формулы для закона кулона

  • Как формулируется закон кулона

  • Реферат на тему закон кулона

0x20-q_mark.png Вопросы по этому материалу:
  • Как происходит взаимодействие между заряженными тела­ми?

  • Почему можно говорить о взаимодействии заряженных тел?

  • Какие ограничения существуют в формулировке закона Кулона относительно взаимодействующих тел?

  • Как формулируется закон Кулона?

  • Учитывает ли закон Кулона действие окружающей среды на взаимодействующие тела?

  • Есть ли ограничение относительно действия закона Кулона?

Формулировки[править]

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Современная формулировка[1]:

Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.

Важно отметить, что для того, чтобы закон был верен, необходимы:

  1. Точечность зарядов, то есть расстояние между заряженными телами должно быть много больше их размеров. Впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
  2. Их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
  3. Расположение зарядов в вакууме.

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.[2]

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

\vec{F}_{12}=k\cdot\frac{q_1 \cdot q_2}{r_{12}^2} \cdot \frac{\vec{r}_{12}}{r_{12}},

где \vec{F}_{12} — сила, с которой заряд 1 действует на заряд 2; q_1, q_2 — величина зарядов; \vec{r}_{12} — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — r_{12}); k — коэффициент пропорциональности.

История открытия

Эксперименты с заряженными частицами проводили много физиков:

  • Г. В. Рихман;
  • профессор физики Ф. Эпинус;
  • Д. Бернулли;
  • Пристли;
  • Джон Робисон и многие другие.

Все эти учёные очень близко подошли к открытию закона, но никому из них не удалось математически обосновать свои догадки. Несомненно, они наблюдали взаимодействие заряженных шариков, но установить закономерность в этом процессе было непросто.

Кулон проводил тщательные измерения сил взаимодействия. Для этого он даже сконструировал уникальный прибор – крутильные весы (см. Рис. 2).


Рис. 2. Крутильные весы

У придуманных Кулоном весов была чрезвычайно высокая чувствительность. Прибор реагировал на силы порядка 10-9 Н. Коромысло весов, под действием этой крошечной силы, поворачивалось на 1º. Экспериментатор мог измерять угол поворота, а значит и приложенную силу, пользуясь точной шкалой.

Благодаря гениальной догадке учёного, идея которой состояла в том, что при соприкосновении заряженного и незаряженного шариков, электрический заряд делился между ними поровну. На это сразу реагировали крутильные весы, коромысло которых поворачивалось на определённый угол. Заземляя неподвижный шарик, Кулон мог нейтрализовать на нём полученный заряд.

Таким образом, учёный смог уменьшать первоначальный заряд подвижного шарика кратное число раз. Измеряя угол отклонения после каждого деления заряда, Кулон увидел закономерность в действии отталкивающей силы, что помогло ему сформулировать свой знаменитый закон.

Онлайн калькулятор Закона Кулона с решением позволит вычислить силу взаимодействия двух зарядов, электрический заряд, а так же расстояние между зарядами, единицы измерения которых, могут включать любые приставки Си. Калькулятор автоматически переведет одни единицы в другие и даст подробное решение.

Калькулятор вычислит:

Силу взаимодействия двух точечных зарядов.
Точечный электрический заряд.
Расстояние между зарядами.

Содержание:

Десятичная дробь.

Обыкновенная дробь a/b.
Произведение чисел a*b.

Число пи (π).

Число Эйлера e.
Е – буква, означающая 10n.

Квадратный корень Sqrt(x).

Корень любой степени Root(n, x).
Возведение в степень Pow(n, x).

Логарифм числа Log(n, x).

Натуральный логарифм Ln(n).
Десятичный логарифм Lg(n).
Двоичный логарифм Lb(n).

Наибольший общий делитель НОД Gcd(n, m).

Наименьшее общее кратное НОК Lcm(n, m).

Тригонометрические функции.

Синус угла Sin(x).
Косинус угла Cos(x).
Тангенс угла Tan(x).
Котангенс угла Cot(x).
Секанс угла Sec(x).
Косеканс угла Csc(x).

Обратные тригонометрические функции.

Арксинус угла Asin(x).
Арккосинус угла Acos(x).
Арктангенс угла Atan(x).
Арккотангенс угла Acot(x).
Арксеканс угла Asec(x).
Арккосеканс угла Acsc(x).

Выражения, содержащие множественное вложение функций и математических операций.

Десятичная дробь

Запись:

Для записи десятичной дроби используйте точку либо запятую

Пример:

1.12 или 1,12

Обыкновенная дробь a/b

Запись:

Для ввода обыкновенных дробей воспользуйтесь знаком «/»

Пример:

1/2 или 3/4

Произведение чисел

Запись:

Для записи произведения двух чисел используйте знак «*»

Пример:

5*4

Число пи (π)

Запись:

Для записи числа π введите «π», либо «pi» или «пи».

Пример:

Sin(π)

Число Эйлера e

е = 2.7182818284…

Запись:

Для записи числа e введите e или E.

Пример:

Cos(e)

Е – буква, означающая 10n

Запись:

Буква Е должна находится только в числе

Пример:

16e+6
16e-4
3.96e+3

Квадратный корень Sqrt(x)

Запись:

Sqrt(x), где
x – любое неотрицательное число или выражение.

Пример:

Sqrt(3)
Sqrt(3/5)
Sqrt(3*3)

Корень любой степени Root(n, x)

Запись:

Root(n, x), где
n – подкореное выражение
x – степень корня
x, n – любые числа или выражения.
Для корня четной степени, подкореное выражение не может быть отрицательным.

Пример:

Корень кубический из дроби 2/5
Root(2/5, 3)

Другие примеры

Root(1.5, 3)
Root((3*5), 3/2)
Root(1.5, 3/7)

Возведение в степень Pow(n, x)

Запись:

Pow(n, x), где
n – основание
x – показатель степени
x, n – любые числа или выражения.

Пример:

Пять в степени три
Pow(5, 3)

Другие примеры
Pow(12.5, 3)
Pow((3-5), 3/2)
Pow(1.5, Sqrt(2))

Логарифм числа Log(n, x)

Запись:

Log(n, x), где
n – число, логарифм которого требуется найти
x – основание логарифма.
x > 0, x ≠ 1, n > 0

Пример:

Log5 34 (логарифм числа 34 по основанию 5), запишем как
Log(34, 5)

Натуральный логарифм Ln(n)
Основание равно числу Эйлера e
(е = 2.7182818284…)

Запись:

Ln(n), где
n > 0
Пример:
Ln(7)

Десятичный логарифм Lg(n)
Основание равно 10

Запись:
Lg(n), где
n > 0

Пример:

Lg(1.6)

Двоичный логарифм Lb(n)
Основание равно 2

Запись:
Lb(n), где
n > 0

Пример:

Lb(3/6)

Наибольший общий делитель НОД Gcd(n, m)

Запись:

Gcd(n, m), где
n, m – целые неотрицательные числа

Пример:

НОД(12; 16) нужно записать как
Gcd(12, 16)

Наименьшее общее кратное НОК Lcm(n, m)

Запись:

Lcm(n, m), где
n, m – целые неотрицательные числа

Пример:

НОК(4; 23) нужно записать как
Lcm (4, 23)

Тригонометрические функции
Все тригонометрические функции принимают как один, так и два аргумента. Если функция принимает один аргумент, то число принимается как радианы.

Синус угла Sin(x)

Запись:

Sin(x)
Sin(x, measure)
Где
x – число
measure – может принимать значения Rad либо Deg

Пример:

Синус π/3 радиан
Sin(π/3) либо Sin(π/3, Rad)

Синус 60° градусов
Sin(60, Deg)

Косинус угла Cos(x)

Запись:

Cos(x)
Cos(x, measure)
Где
x – число
measure – может принимать значения Rad либо Deg

Пример:

Косинус π/3 радиан
Cos(π/3) либо Cos(π/3, Rad)

Косинус 60° градусов
Cos(60, Deg)

Тангенс угла Tan(x)

Запись:

Tan(x)
Tan(x, measure)
Где
x – число
measure – может принимать значения Rad либо Deg

Пример:

Тангенс π/3 радиан
Tan(π/3) либо Tan(π/3, Rad)

Тангенс 60° градусов
Tan(60, Deg)

Котангенс угла Cot(x)

Запись:

Cot(x)
Cot(x, measure)
Где
x – число
measure – может принимать значения Rad либо Deg

Пример:

Котангенс π/3 радиан
Cot(π/3) либо Cot(π/3, Rad)

Котангенс 60° градусов
Cot(60, Deg)

Секанс угла Sec(x)

Запись:

Sec(x)
Sec(x, measure)
Где
x – число
measure – может принимать значения Rad либо Deg

Пример:

Секанс π/3 радиан
Sec(π/3) либо Sec(π/3, Rad)

Секанс 60° градусов
Sec(60, Deg)

Косеканс угла Csc(x)

Запись:

Csc(x)
Csc(x, measure)
Где
x – число
measure – может принимать значения Rad либо Deg

Пример:

Косеканс π/3 радиан
Csc(π/3) либо Csc(π/3, Rad)

Косеканс 60° градусов
Csc(60, Deg)

Обратные тригонометрические функции
Все обратные тригонометрические функции принимают как один, так и два аргумента. Если функция принимает один аргумент, то функция выдаст ответ в радианах.

Арксинус Asin(x)

Запись:

Asin(x)
Asin(x, measure)
Где
x – число
measure – может принимать значения Rad либо Deg

Пример:

Арксинус 1/3 (ответ получить в радианах)
Asin(1/3) либо Asin(1/3, Rad)

Арксинус 1/3 (ответ получить в градусах)
Asin(1/3, Deg)

Арккосинус Acos(x)

Запись:

Acos(x)
Acos(x, measure)
Где
x – число
measure – может принимать значения Rad либо Deg

Пример:

Арккосинус 1/3 (ответ получить в радианах)
Acos(1/3) либо Acos(1/3, Rad)

Арккосинус 1/3 (ответ получить в градусах)
Acos(1/3, Deg)

Арктангенс Atan(x)

Запись:

Atan(x)
Atan(x, measure)
Где
x – число
measure – может принимать значения Rad либо Deg

Пример:

Арктангенс 1/3 (ответ получить в радианах)
Atan(1/3) либо Atan(1/3, Rad)

Арктангенс 1/3 (ответ получить в градусах)
Atan(1/3, Deg)

Арккотангенс Acot(x)

Запись:

Acot(x)
Acot(x, measure)
Где
x – число
measure – может принимать значения Rad либо Deg

Пример:

Арккотангенс 1/3 (ответ получить в радианах)
Acot(1/3) либо Acot(1/3, Rad)

Арккотангенс 1/3 (ответ получить в градусах)
Acot(1/3, Deg)

Арксеканс Asec(x)

Запись:

Asec(x)
Asec(x, measure)
Где
x – число
measure – может принимать значения Rad либо Deg

Пример:

Арксеканс 1/3 (ответ получить в радианах)
Asec(1/3) либо Asec(1/3, Rad)

Арксеканс 1/3 (ответ получить в градусах)
Asec(1/3, Deg)

Арккосеканс Acsc(x)

Запись:

Acsc(x)
Acsc(x, measure)
Где
x – число
measure – может принимать значения Rad либо Deg

Пример:

Арккосеканс 1/3 (ответ получить в радианах)
Acsc(1/3) либо Acsc(1/3, Rad)

Арккосеканс 1/3 (ответ получить в градусах)
Acsc(1/3, Deg)

Выражения, содержащие множественное вложение функций и математических операций
Любое выражение может содержать в себе множественное вложение функций, ограничение по длине выражения составляет 100 символов. Введите выражение (максимальная длина 100 символов).

Примеры:

Root(Pow(3, 6), 2);
(5/2-4)*34/5-(Root(3, 2))
(12-123+5)/(12.45*(34/6))
Sin(60, Deg)+Cos(45, Deg)
и т.д.

Перевести единицы: СГСЭ-единица заряда [СГСЭ-единица заряда] в кулон [Кл]

1 СГСЭ-единица заряда [СГСЭ-единица заряда] = 3,335640951982E-10 кулон [Кл]

Picture

История открытия

Ш.О. Кулон в 1785 г. впервые экспериментально доказал взаимодействия описанные законом. В своих опытах он использовал специальные крутильные весы. Однако еще в 1773 г. было доказано Кавендишем, на примере сферического конденсатора, что внутри сферы отсутствует электрическое поле. Это говорило о том, что электростатические силы изменяются в зависимости от расстояния между телами. Если быть точнее — квадрату расстояния. Тогда его исследования не были опубликованы. Исторически сложилось так, что это открытие было названо в честь Кулона, аналогичное название носит и величина, в которой измеряется заряд.

Закон Кулона в квантовой механике[править | править код]

В квантовой механике закон Кулона формулируется не при помощи понятия силы, как в классической механике, а при помощи понятия потенциальной энергии кулоновского взаимодействия. В случае, когда рассматриваемая в квантовой механике система содержит электрически заряженные частицы, к оператору Гамильтона системы добавляются слагаемые, выражающие потенциальную энергию кулоновского взаимодействия, так, как она вычисляется в классической механике[4]. Это утверждение не следует из остальных аксиом квантовой механики, а получено путём обобщения опытных данных.

Так, оператор Гамильтона атома с зарядом ядра Z имеет вид:

H = − ℏ 2 2 m ∑ j ∇ j 2 − Z e 2 ∑ j 1 r j + ∑ i > j e 2 r i j . {\displaystyle H=-{\frac {\hbar ^{2}}{2m}}\sum _{j}\nabla _{j}^{2}-Ze^{2}\sum _{j}{\frac {1}{r_{j}}}+\sum _{i>j}{\frac {e^{2}}{r_{ij}}}.} {\displaystyle H=-{\frac {\hbar ^{2}}{2m}}\sum _{j}\nabla _{j}^{2}-Ze^{2}\sum _{j}{\frac {1}{r_{j}}}+\sum _{i>j}{\frac {e^{2}}{r_{ij}}}.}

Здесь m — масса электрона, е — его заряд, r j {\displaystyle r_{j}} r_{j} — абсолютная величина радиус-вектора j-го электрона r → j {\displaystyle {\vec {r}}_{j}} \vec r_j, а r i j = | r → i − r → j | {\displaystyle r_{ij}=|{\vec {r}}_{i}-{\vec {r}}_{j}|} r_{ij}=|\vec r_{i} - \vec r_{j}|. Первое слагаемое выражает кинетическую энергию электронов, второе слагаемое — потенциальную энергию кулоновского взаимодействия электронов с ядром и третье слагаемое — потенциальную кулоновскую энергию взаимного отталкивания электронов. Суммирование в первом и втором слагаемом ведется по всем Z электронам. В третьем слагаемом суммирование идёт по всем парам электронов, причём каждая пара встречается однократно[5].

Сила взаимодействия двух точечных зарядов F

Формула силы взаимодействия двух точечных зарядов F Сила взаимодействия двух точечных неподвижных зарядов в вакууме направлена вдоль прямой, соединяющий эти заряды, прямо пропорциональна произведению модулей этих зарядов и обратно пропорциональна квадрату расстояния между ними. Коэффициент пропорциональности k = 8.9875517873681764 × 109 Единицей измерения силы в СИ является Ньютон (Н). Международное обозхначение: N
Первый заряд q1 =
Второй заряд q2 =
Расстояние r =
Единица измерения силы F

Основные формулы по физике: кинематика, динамика, статика

Внимание!

Если вам нужна помощь с академической работой, то рекомендуем обратиться к профессионалам. Более 70 000 экспертов готовы помочь вам прямо сейчас.

Расчет стоимости Гарантии Отзывы

Итак, как говорится, от элементарного к сложному. Начнём с кинетических формул:

Формулы по механике

Также давайте вспомним движение по кругу:

Формулы по кинематике

Медленно, но уверенно мы перешли более сложной теме – к динамике:

Формулы по динамике

Уже после динамики можно перейти к статике, то есть к условиям равновесия тел относительно оси вращения:

Формулы по статике

После статики можно рассмотреть и гидростатику:

Формулы по гидростатике

Куда же без темы “Работа, энергия и мощность”. Именно по ней даются много интересных, но сложных задач. Поэтому без формул здесь не обойтись:

Формулы по работе, энергии и мощности

Коэффициент пропорциональности k и электрическая постоянная \varepsilon_0

В формуле закона Кулона есть параметры k — коэффициент пропорциональности или \varepsilon_0 — электрическая постоянная. Электрическая постоянная \varepsilon_0 представлена во многих справочниках, учебниках, интернете, и её не нужно считать! Коэффициент пропорциональности в вакууме на основе \varepsilon_0 можно найти по известной формуле:

k = \frac {1}{4\cdot \pi\cdot \varepsilon_0}

Здесь \varepsilon_0=8.85\cdot 10^{-12} \frac {C^2}{H\cdot m^2} — электрическая постоянная,

\pi=3.14 — число пи,

k=9\cdot 10^{9} \frac {H\cdot m^2}{C^2} — коэффициент пропорциональности в вакууме.

Дополнительная информация! Не зная представленные выше параметры, найти силу взаимодействия между двумя точечными электрическими зарядами не получится.
Формулировка и формула закона Кулона

Чтобы подытожить вышесказанное, необходимо привести официальную формулировку главного закона электростатики. Она принимает вид:

Сила взаимодействия двух покоящихся точечных зарядов в вакууме прямо пропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними. Причём произведение зарядов необходимо брать по модулю!

F=k\cdot \frac {|q_1|\cdot |q_2|}{r^2}

В данной формуле q1 и q2 — это точечные заряды, рассматриваемые тела; r2 — расстояние на плоскости между этими телами, взятое в квадрате; k — коэффициент пропорциональности (9\cdot 10^{9} \frac {H\cdot m^2}{C^2} для вакуума).

Закон Кулона с точки зрения квантовой электродинамики[править]

Согласно квантовой электродинамике, электромагнитное взаимодействие заряженных частиц осуществляется путём обмена виртуальными фотонами между частицами. Принцип неопределённости для времени и энергии допускает существование виртуальных фотонов на время между моментами их испускания и поглощения. Чем меньше расстояние между заряженными частицами, тем меньшее время нужно виртуальным фотонам для преодоления этого расстояния и следовательно, тем большая энергия виртуальных фотонов допускается принципом неопределенности. При малых расстояниях между зарядами принцип неопределённости допускает обмен как длинноволновыми, так и коротковолновыми фотонами, а при больших расстояниях в обмене участвуют только длинноволновые фотоны. Таким образом, с помощью квантовой электродинамики можно вывести закон Кулона.[5][6]

Электростатика, видео

И в завершение интересное видео об электростатике.

Закон Кулона формула

Закон Кулона- это основа электростатики, знание формулировки и основной формулы, описывающей данный закон необходимо также для изучения раздела “Электричество и магнетизм”.

Что можно определить с помощью закона Кулона

Применив данный физический закон, возможно установить значение и направление силы, которая действует на точечный заряд со стороны иного заряда. Также возможно вычислить величины точечных зарядов, значение радиус-вектора между ними.

Применение закона КулонаПрименение закона Кулона

Формула Кулона для диэлектрической среды

Коэффициент с учетом величин системы СИ определяется в Н2*м2/Кл2. Он равен:

Значение коэффициента k

Во многих учебниках этот коэффициент можно встретить в виде дроби:

Коэффициент в виде дроби

Здесь Е0= 8,85*10-12 Кл2/Н*м2 — это электрическая постоянная. Для диэлектрика добавляется E — диэлектрическая проницаемость среды, тогда закон Кулона может применяться для расчетов сил взаимодействия зарядов для вакуума и среды.

С учетом влияния диэлектрика имеет вид:

Закон Кулона для диэлектрика

Отсюда мы видим, что введение диэлектрика между телами снижает силу F.

Примеры статического электричества

Грозы на Земле. Вид с Международной космической станции. Фотографии НАСА.

Грозы на Земле. Вид с Международной космической станции. Фотографии НАСА.

Мы с детства инстинктивно боимся грома, хотя сам по себе он абсолютно безопасен — просто акустическое следствие грозного удара молнии, которая и вызвана атмосферным статическим электричеством. Моряки времён парусного флота впадали в священный трепет, наблюдая огоньки святого Эльма на своих мачтах, которые тоже являются проявлением атмосферного статического электричества. Люди наделяли верховных богов древних религий неотъемлемым атрибутом в виде молний, будь то греческий Зевс, римский Юпитер, скандинавский Тор или Перун русичей.

Самолет Air Canada на земле во время заправки

Самолет Air Canada на земле во время заправки

С тех пор, как люди впервые начали интересоваться электричеством, прошли века, и мы даже порой не подозреваем, что учёные, сделав из изучения статического электричества глубокомысленные выводы, спасают нас от ужасов пожаров и взрывов. Мы укротили электростатику, нацелив в небо пики громоотводов и снабдив бензовозы заземляющими устройствами, позволяющими электростатическим зарядам безопасно уходить в землю. И, тем не менее, статическое электричество продолжает хулиганить, создавая помехи приёму радиосигналов — ведь на Земле одновременно бушует до 2000 гроз, которые ежесекундно генерируют до 50 разрядов молний.

Исследованием статического электричества люди занимались с незапамятных времён; даже термину «электрон» мы обязаны древним грекам, хотя они подразумевали под этим несколько иное — так они называли янтарь, который прекрасно электризовался при трении (др. – греч. ἤλεκτρον — янтарь). К сожалению, наука о статическом электричестве не обошлась без жертв — российский учёный Георг Вильгельм Рихман во время проведения эксперимента был убит разрядом молнии, которая является наиболее грозным проявлением атмосферного статического электричества.

Статическое электричество и погода

В первом приближении, механизм образования зарядов грозового облака во многом сходен с механизмом электризации расчёски — в нём точно так же происходит электризация трением. Льдинки, образуясь из мелких капелек воды, охлаждённой из-за переноса восходящими потоками воздуха в верхнюю, более холодную, часть облака, сталкиваются между собой. Более крупные льдинки заряжаются при этом отрицательно, а меньшие — положительно. Из-за разницы в весе происходит перераспределение льдинок в облаке: крупные, более тяжёлые, опускаются в нижнюю часть облака, а более лёгкие льдинки меньшего размера собираются в верхней части грозового облака. Хотя всё облако в целом остаётся нейтральным, нижняя часть облака получает отрицательный заряд, а верхняя — положительный.

Франклин на стодолларовой купюре

Франклин на стодолларовой купюре

Подобно наэлектризованной расческе, притягивающей воздушный шарик из-за индуцирования на его ближней к расческе стороне противоположного заряда, грозовое облако индуцирует на поверхности Земли положительный заряд. По мере развития грозового облака, заряды увеличиваются, при этом растёт напряжённость поля между ними, и, когда напряжённость поля превысит критическое значение для данных погодных условий, происходит электрический пробой воздуха — разряд молнии.

На бога надейся, а про молниеотвод не забывай!

На бога надейся, а про молниеотвод не забывай!

Человечество обязано Бенджамину Франклину — впоследствии президенту Высшего исполнительного совета Пенсильвании и первому Генеральному почтмейстеру США — за изобретение громоотвода (точнее было бы назвать его молниеотводом), навсегда избавившего население Земли от пожаров, вызываемых попаданием молний в здания. Кстати, Франклин не стал патентовать своё изобретение, сделав его доступным для всего человечества.

Не всегда молнии несли только разрушения — уральские рудознатцы определяли расположение железных и медных руд именно по частоте ударов молний в определённые точки местности.

Лейденские банки в экспозиции Канадского музея науки и техники

Лейденские банки в экспозиции Канадского музея науки и техники

В числе учёных, посвятивших своё время исследованию явлений электростатики, необходимо упомянуть англичанина Майкла Фарадея, впоследствии одного из основателей электродинамики, и голландца Питера ван Мушенбрука, изобретателя прототипа электрического конденсатора — знаменитой лейденской банки.

Наблюдая за гонками DTM, IndyCar или Formula 1, мы даже не подозреваем, что механики зазывают пилотов для смены резины на дождевую, опираясь на данные метеорологических РЛС. А эти данные, в свою очередь, основаны именно на электрических характеристиках подступающих грозовых облаков.

Метеорологическая РЛС в аэропорту им. Пирсона, Торонто

Метеорологическая РЛС в аэропорту им. Пирсона, Торонто

Статическое электричество — наш друг и враг одновременно: его недолюбливают радиоинженеры, натягивая заземляющие браслеты при ремонте сгоревших плат в результате удара поблизости молнии — при этом, как правило, выходят из строя входные каскады оборудования. При неисправном заземляющем оборудовании оно может стать причиной тяжёлых техногенных катастроф с трагическими последствиями — пожаров и взрывов целых заводов.

Статическое электричество в медицине

Тем не менее, оно приходит на помощь людям при нарушениях сердечного ритма, вызванных хаотическими судорожными сокращениями сердца больного. Его нормальная работа восстанавливается пропусканием небольшого электростатического разряда при помощи прибора, называемого дефибриллятором. Сцена возвращения пациента с того света с помощью дефибриллятора является своего рода классикой для кино определённого жанра. При этом следует отметить, что в кино традиционно показывают монитор с отсутствующим сигналом сердцебиения и зловещей прямой линией, хотя на самом деле применение дефибриллятора не помогает, если сердце пациента остановилось.

Разрядники на крыле самолета Boeing 738-800 предназначены для снятия статического электричества для обеспечения надежной работы бортового электронного оборудования.

Разрядники на крыле самолета Boeing 738-800 предназначены для снятия статического электричества для обеспечения надежной работы бортового электронного оборудования.

Другие примеры

Нелишне будет вспомнить о необходимости металлизации самолетов для защиты от статического электричества, то есть, соединения всех металлических частей самолета, включая двигатель, в одну электрически целостную конструкцию. На законцовках всего оперения самолета устанавливают статические разрядники для стекания статического электричества, накапливающегося во время полета вследствие трения воздуха о корпус самолета. Эти меры необходимы для защиты от помех, возникающих при разряде статического электричества, и обеспечения надежной работы бортового электронного оборудования.

Электростатика играет определённую роль в знакомстве учеников с разделом «Электричество» — более эффектных опытов, пожалуй, не знает ни один из разделов физики — тут тебе и волосы, вставшие дыбом, и погоня воздушного шарика за расческой, и таинственное свечение люминесцентных ламп безо всякого подключения проводов! А ведь этот эффект свечения газонаполненных приборов спасает жизни электромонтёрам, имеющих дело с высоким напряжением в современных линиях электропередач и распределительных сетях.

И самое главное, учёные пришли к выводу, что статическому электричеству, точнее его разрядам в виде молний, мы, вероятно, обязаны появлению жизни на Земле. В ходе экспериментов в середине прошлого века, с пропусканием электрических разрядов через смесь газов, близкую по составу к первичному составу атмосферы Земли, была получена одна из аминокислот, которая является «кирпичиком» нашей жизни.

Источники бесперебойного питания (ИБП) используются для защиты оборудования от провалов напряжения, пропадания электропитания и импульсов высокого напряжения в промышленной электросети, которые могут возникать во время непрямых ударов молний

Источники бесперебойного питания (ИБП) используются для защиты оборудования от провалов напряжения, пропадания электропитания и импульсов высокого напряжения в промышленной электросети, которые могут возникать во время непрямых ударов молний

Для укрощения электростатики очень важно знать разность потенциалов или электрическое напряжение, для измерения которого придуманы приборы, называемые вольтметрами. Ввел понятие электрического напряжения итальянский учёный 19-го века Алессандро Вольта, по имени которого и названа эта единица. В своё время для измерения электростатического напряжения использовались гальванометры, названные по имени соотечественника Вольта Луиджи Гальвани. К сожалению, эти приборы электродинамического типа вносили искажения в измерения.

Направление силы Кулона и векторный вид формулы

Для полного понимания формулы закон Кулона можно изобразить наглядно:

Напрвление силы Кулона для двух точечных зарядов одинаковой полярности.

F1,2 — сила взаимодействия первого заряда по отношению ко второму.

F2,1 — сила взаимодействия второго заряда по отношению к первому.

Также при решении задач электростатики необходимо учитывать важное правило: одноимённые электрические заряды отталкиваются, а разноимённые притягиваются. От этого зависит расположение сил взаимодействия на рисунке.

Если рассматриваются разноимённые заряды, то силы их взаимодействия будут направлены навстречу друг другу, изображая их притягивание.

Напрвление силы Кулона для двух точечных зарядов разной полярности.

Формула основного закона электростатики в векторном виде можно представить следующим образом:

\vec F_1_2=\frac {1}{4\cdot \pi\cdot \varepsilon_0}\cdot \frac {q_1\cdot q_2}{r_1_2^3}\cdot \vec r_1_2

\vec F_1_2 — сила, действующая на точечный заряд q1, со стороны заряда q2,

\vec r_1_2 — радиус-вектор, соединяющий заряд q2 с зарядом q1,

r=|\vec r_1_2|

Важно! Записав формулу в векторном виде, взаимодействующие силы двух точечных электрических зарядов надо будет спроецировать на ось, чтобы правильно поставить знаки. Данное действие является формальностью и часто выполняется мысленно без каких-либо записей.

Следствия из закона Кулона

  • существует два вида зарядов – положительные и отрицательныеодинаковые заряды отталкиваются, а разные – притягиваютсязаряды могут передаваться от одного к другому, так как заряд не является постоянной и неизменной величиной. Он может изменяться в зависимости от условий (среды), в которых находится заряддля того, чтобы закон был верным, необходимо учитывать поведение зарядов в вакууме и их неподвижность

Наглядное представление закона Кулона:

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Напоследок рекомендуем просмотреть видео, на котором предоставлено подробное объяснение Закона Кулона:

Полезное по теме:

  • Закон Джоуля-Ленца
  • Зависимость сопротивления проводника от температуры
  • Правила буравчика
  • Закон Ома простыми словами

Расчёт конденсаторов

В общем случае емкостной показатель С определяется по формуле:

C=q/U,

где q – заряд конденсатора на одной из его пластин, U – значение напряжения на конденсаторе.

Из этого выражения можно вывести формулу заряда конденсатора, величину которого можно найти, измерив два других показателя с помощью мультиметра.

Часто возникает вопрос, может ли этот параметр измениться. Он является постоянной величиной, присущей данному элементу и зависящей от его габаритов и устройства. Узнать емкостное значение можно с помощью мультиметра. Пользуясь этими данными, можно рассчитать целевую индуктивность дросселя для колебательного контура или параметры резистора.

В чем измеряется емкость? За измерительную единицу принимается параметр конденсаторного устройства, который можно зарядить 1 Кл до состояния, когда разница потенциалов будет равной 1 вольту. Название этой единицы – фарад (Ф).

Важно! Если сравнить два устройства, идентичных по габаритам, но различающихся тем, что у одного в зазоре между пластинами находится диэлектрический материал, а у другого – воздушное пространство, то при помещении одинаковых зарядов потенциальная разница первой детали будет в Е раз больше. Е – это число, равное диэлектрической проницаемости материала, из которого состоит использованный слой.

Ниже приведены формулы для конденсаторных элементов разной конфигурации. Рассчитанные по ним значения соответствуют идеальным устройствам, но релевантны и для реальных в тех случаях, когда емкостными потерями можно пренебречь.

Формула электрической емкости плоского конденсатора

В основном электрополе пластин плоского конденсатора бывает однородным, за исключением боковых частей, влиянием которых обычно принято пренебрегать. Однако, если пространство между обкладками велико в сопоставлении с их габаритами, краевые искажения нужно учитывать. В общем случае, чтобы высчитать, сколько фарад составит емкость плоского конденсатора, пользуются выражением:

C=E*E0*S/d, где S – площадь меньшей обкладки, E0 – электрическая константа, d – длина пространства между пластинами.


Плоский конденсаторный элемент

Формула электрической емкости цилиндрического изделия

Такой компонент состоит из пары разных по размеру коаксиальных цилиндрических элементов проводника, в пространстве между которыми расположили диэлектрический материал. В этом случае для нахождения емкостной величины не нужно узнавать значение заряда на обкладках конденсатора. Можно воспользоваться следующей формулой емкости:

С=2 π *E*E0*l / ln(R2/R1).

Здесь R1 и R2 – радиусы, соответственно, внутреннего и наружного цилиндров, l – их высота (она одинакова, в то время как радиальные параметры отличаются).


Цилиндрическое изделие

Формула для сферического изделия

Сферическая деталь состоит из двух проводниковых сфер с диэлектрическим слоем между ними. Вот как найти емкость круглого конденсатора:

C=4 π *E*E0* R1* R2 / R2 – R1.

Буквами R обозначены, как и в предыдущем примере, радиусы компонентов.

Ёмкость одиночного проводника

Это характеристика способности твердого проводникового компонента к удержанию электрозаряда. Она определяется особенностями средового окружения (в частности, диэлектрической проницаемостью), взаиморасположением тел, имеющих на себе заряд, размерами детали. От силы тока и величины заряда она не зависит.

Взаимодействие зарядов закон Кулона

Силы взаимодействия между зарядами по модулю принимают одинаковое значение, но отличаются по направлению. Таким образом, напрашивается вывод, что сила взаимодействия относится к тем силам, которые повинуются третьему закону Ньютона: у любой силы есть противодействующая сила, равная ей по модулю, но обратная по направлению.

Взаимодействие зарядовВзаимодействие зарядов

Между электрическими зарядами одного знака действуют силы отталкивания, а между зарядами разных знаков — силы притяжения. Взаимодействие между зарядами лежит в основе всех фундаментальных законов электродинамики, электромагнетизма, электростатики.

См. также[править]

  • Электрическое поле
  • Дальнодействие
  • Закон Био — Савара — Лапласа
  • Закон притяжения
  • Кулон, Шарль Огюстен де
  • Кулон (единица измерения)
  • Принцип суперпозиции
  • Уравнения Максвелла

Принцип суперпозиции закон Кулона

Вне зависимости от того, сколько зарядов в системе, можно использовать закон Кулона, чтобы высчитать силу взаимодействия между каждой парой. Отсюда следует принцип суперпозиции, который формулируется примерно так:

На заряд, который расположен в любой точке системы зарядов, действует сила. При этом заряды в системе объединены. Данная сила представляет собой векторную сумму сил, создающихся каждым зарядом системы по отдельности и действующих на заряд в данной точке. К слову, принцип суперпозиции распространяется на любые заряженные тела, не обязательно только на точечные заряды.

Принцип суперпозицииПринцип суперпозиции

Рисунок: F=F21+F31; F2=F12+F32; F3=F13+F23;

Пример: Есть две заряженные точки, которые действуют на третью точку силами: F1 и F2. Тогда система, состоящая из первой и второй точек, действует на третью точку с силой F = F1 + F2.

Также отсюда следует, что напряженность электрического поля, то есть силовая характеристика поля, складывается из суммы напряженностей, которые создаются обособленным зарядом поля.

Напряженность электрического поляНапряженность электрического поля

1) Напряженность равна результату деления кулоновской силы, действующей на заряд, на величину этого заряда.

[E] = Н/Кл = В/м

2) Величина пробного заряда не влияет на напряжённость.

3) Сила, которая действует на заряд от электрического поля, равняется произведению заряда на вектор напряженности в этой точке.

Напряженность электрического поля точечного заряда QНапряженность электрического поля точечного заряда Q

Если рассмотреть с физической точки зрения, данное правило исходит из того, что покоящиеся заряды создают электростатическое поле. Иначе говоря, поля разных зарядов не влияют друг на друга, то есть суммарное поле системы зарядов складывается из векторной суммы электростатических полей, созданных каждым зарядом.

Важно! Следует учесть, что принцип суперпозиции не действует на очень малых или слишком больших расстояниях.

Принцип суперпозиции подразумевает тот факт, что на силы между двумя предметами (подразумеваются силы взаимодействия) не влияет присутствие других тел, обладающих каким-то количеством заряда. Но при этом должно быть задано распределение зарядов.

Закон сохранения зарядов

Закон сохранения зарядов

гласит, что заряды не появляются из неоткуда и не исчезают в никуда, а просто переходят от одного к другому или, выражаясь более научным языком – для замкнутой системы алгебраическая сумма зарядов всегда остается постоянной.

Понравилась статья, расскажите о ней друзьям:

Скорее всего, Вам будет интересно:

  • Плотность тока проводимости, смещения, насыщения: определение и формулы
  • Уравнение состояния идеального газа Менделеева-Клапейрона с выводом
  • Основные положения молекулярно-кинетической теории (МКТ), формулы МКТ
  • Основное уравнение молекулярно-кинетической теории (МКТ) с выводом
  • Средняя линия трапеции: чему равна, свойства, доказательство теоремы
  • Свойства прямоугольной трапеции
  • Как найти область определения функции онлайн
  • Влияние человека на природу, воздействие общества на природу
  • Состав служебного программного обеспечения
  • Свойства вписанной в треугольник окружности

Литература[править]

  • Филонович С. Р. Судьба классического закона. — М., Наука, 1990. — 240 с., ISBN 5-02-014087-2 (Библиотечка «Квант», вып. 79), тир. 70500 экз.
Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...