Расчет характеристик оптического кабеля, стрел провеса и нагрузок при различных климатических условиях

Содержание

Расстояние между опорами ЛЭП: столбы линий электропередачи 10 кВ, 110 кВ и 35 кВ

Необходимая всем электроэнергия передается по проводам, подвешенным к столбам различной конструкции и линиям электропередачи. Для безопасности большое значение имеет расстояние между опорами ЛЭП и их высота. ГОСТ регламентирует все размеры исходя из силы тока в проводах, материала и конструкции опоры. Большое значение имеет и расположение опор ЛЭП на открытой местности или в населенном пункте.

Факторы, от которых зависит расстояние между столбами

В разных местах расстояние между столбами ЛЭП и высота провода отличаются. Значения рассчитывают исходя из того, что натяжение провода и его провисание будут создавать между опорами преобладающие горизонтальные нагрузки.

Второй важный элемент – это сила обледенения в конкретной местности и сопротивление раскачиванию ветром. Значение рассчитывается для каждого региона отдельно в зависимости от климатических условий. Кроме этого, какое расстояние должно быть между столбами и опорами, зависит от следующих факторов:

  • напряжение в сети,
  • тип населенного пункта, через который проходит линия,
  • удаление от населенных пунктов,
  • количество воздушных линий,
  • тип проводов.

Корректировка расстояний между столбами линий электропередачи производится прежде всего в населенных пунктах. На основании общих требований опоры не должны преграждать свободный въезд во двор, загораживать дорогу пешеходам, стоять непосредственно перед лицевыми фасадами зданий и входами в дома.

Со стороны дороги устанавливается ограждение от наезда автомобилей на опоры. Это бетонные столбы, тумбы и высокие заградительные бордюры.

Каждый высоковольтный столб должен быть маркирован. На высоте 2,5–3 м наносятся следующие данные:

  1. Порядковый номер.
  2. Значение напряжения в сети.
  3. Год установки конструкции.
  4. Ширина охранной зоны.
  5. Расстояние от земли до кабелей связи.
  6. Номер телефона владельца – организации, эксплуатирующей данную сеть.

Металлические конструкции предохраняют от коррозии, регулярно покрывают защитной грунтовкой или корабельной краской.

Нумерация опор осуществляется от источника тока.

Максимальный прогиб проводов рассчитывается с учетом обледенения, которое делится на 6 категорий, и силы ветра. В точках подвеса устанавливаются натяжители, обеспечивающие минимальный угол отклонения горизонтального положения кабеля и наименьшее провисание.

Неизолированный провод используется для линий вне городов и поселков. Монтаж его будет осуществляться на предельно возможной высоте непосредственно на изоляторы с помощью специальных шин на болтах.

Напряжение в сети

Расстояние между опорами определяется в зависимости от напряжения тока в проводах, которые они несут:

  • 0,4–1 кВ – дистанция в пределах 30–75 м,
  • 10 кВ – пролеты до 200 м,
  • 220 кВ – расстояние между опорами до 400 м,
  • свыше 330 кВ – опоры могут располагаться друг от друга на удалении максимально в 700 м.

Провода подвешиваются параллельно на изоляторах на высоте, также зависимой от напряжения. Если оно до 1000 В, то линию крепят на высоте 7 м.

Допустимое провисание и расстояние до нижней точки тоже определяется в зависимости от напряжения. В городах, поселках ИЖС и СНТ нижняя точка провисания должна быть выше 6 м от земли.

Пролеты между опорами в жилых поселках и за их пределами

Населенный пункт любого типа, дачный поселок, город и деревня имеют одинаковый статус для прохождения по ним ЛЭП. Расстояние между столбами определяется до 70 м при условии, что в момент максимального обледенения они не провиснут ниже 6 м в местах, где проходит дорога и тротуар. Провод должен быть изолированный.

Освещение по улице в частном секторе устанавливается на столбах, расположенных вдоль дороги на дистанции друг от друга 30–50 м. В гараж и дом подвод электроэнергии осуществляется через самонесущий изолированный провод. Точка ввода должна быть не ниже 4 м от поверхности земли.

Если кабель протянут от столба через участок, устанавливается промежуточная опора, обеспечивающая подвес на высоте 7 м и максимальное провисание до 6 м. Деревья сажают на расстоянии более 5 м от провода. Непосредственно под линией можно делать огород с растениями в 0,5 м высотой. Кустарник высаживается на расстоянии минимально метр от линии проекции кабеля.

Высоковольтные линии ЛЭП свыше 300 кВ не должны проходить по населенным пунктам любого типа. Удаление от ближайшего жилого дома должно соответствовать 100 м. Дистанция до границы участка без застроек составляет минимально ширину санитарной зоны в одну сторону.

Основанием для расчета длины пролетов ЛЭП служит ТП 25.0038, в котором отражена разработка расчетных дистанций для опор ВЛ 0,28–35 кВ. Типовой проект содержит таблицы размеров пролетов между железобетонными и металлическими опорами в зависимости от степени обледенения, ветровой нагрузки и типа провода по сечению и изоляции.

На основании заложенных в него данных можно проектировать, на какое расстояние устанавливать столб с СИП. Если протянут будет электрический провод, металлический или медный, без изоляции, то именно от этого зависит, насколько изменится пролет между столбами.

Разновидности опор электропередач

В зависимости от способа подвески проводов опоры бывают:

  1. промежуточные, на которых провода закрепляют в поддерживающих зажимах;
  2. анкерного типа, служащие для натяжения проводов; на этихопорах провода закрепляют в натяжных зажимах;
  3. угловые, которые устанавливают на углах поворота ВЛ с подвеской проводов в поддерживающих зажимах; они могут быть промежуточные, ответвительные и угловые, концевые, анкерные угловые.

Укрупнено же опоры ВЛ выше 1 кВ подразделяются на два вида анкерные, полностью воспринимающие тяжение проводов и тросов в смежных пролетах; промежуточные, не воспринимающие тяжение проводов или воспринимающие частично.

На ВЛ применяют деревянные опоры (рис. 5Л, б, в), деревянные опоры нового поколения (рис. 5.1, г), стальные (рис. 5.1, д) и железобетонные опоры.

Воздушные линии электропередачи ЛЭП: конструкция, разновидности, параметры

Деревянные опоры ВЛ

Деревянные опоры ВЛ все еще имеют распространение в странах, располагающих лесными запасами. Достоинствами дерева как материала для опор являются: небольшой удельный вес, высокая механическая прочность, хорошие электроизоляционные свойства, природный круглый сортамент. Недостатком древесины является ее гниение, для уменьшения которого применяют антисептики.

Эффективным методом борьбы с гниением является пропитка древесины маслянистыми антисептиками. В США осуществляется переход к деревянным клееным опорам.

Для ВЛ напряжением 20 и 35 кВ, на которых применяют штыревые изоляторы, целесообразно применение одностоечных свечеобразных опор с треугольным расположением проводов. На воздушных ЛЭП 6 —35 кВ со штыревыми изоляторами при любом расположении проводов расстояние между ними D, м, должно быть не меньше значений, определяемых по формуле

где U — напряжение линии, кВ; — наибольшая стрела провеса, соответствующая габаритному пролету, м; Ь — толщина стенки гололеда, мм (не более 20 мм).

Для ВЛ 35 кВ и выше с подвесными изоляторами при горизонтальном расположении проводов минимальное расстояние между проводами, м, определяется по формуле

Стойку опоры выполняют составной: верхнюю часть (собственно стойку) — из бревен длиной 6,5…8,5 м, а нижнюю часть (так называемый пасынок) — из железобетона сечением 20 х 20 см, длиной 4,25 и 6,25 м или из бревен длиной 4,5…6,5 м. Составные опоры с железобетонным пасынком сочетают в себе преимущества железобетонных и деревянных опор: грозоустойчивость и сопротивляемость гниению в месте касания с грунтом. Соединение стойки с пасынком выполняют проволочными бандажами из стальной проволоки диаметром 4…6 мм, натягиваемой при помощи скрутки или натяжным болтом.

Анкерные и промежуточные угловые опоры для ВЛ 6 — 10 кВ выполняют в виде Аобразной конструкции с составными стойками.

Сколько расстояние между опорами освещения, столбами фонарными

Расстояние между фонарными столбами, опорами освещения

При установке фонарных столбов, осветительных опор в городе, вдоль дороги, расстояние между опоры наружного освещения города определяется исходя из количества осветительных фонарей установленных на опоре, их мощности и высоты установки светильника над дорогой. Расстояние между осветительными столбами железобетонными при установке фонарных столбов вдоль дорог определяется по этой же таблице. Расчет расстояния между опорами освещения выполнен на основании норм освещенности дорог. Данный расчет позволяет ответить на вопросы: «Сколько метров между фонарными столбами освещения?», «Какое расстояние между фонарными столбами?», «Какой пролет между столбами освещения?». Отношение шага светильников к высоте их подвеса на улицах и дорогах всех категорий должно быть не более 5:1 при одностороннем, осевом и прямоугольном размещении светильников и не более 7:1 при шахматной схеме размещения. В таблице даны максимальные расстояния между опорами освещения с учетом требуемой освещенности дорожного полотна.

Сколько метров между опорой и дорогой при выполнении электромонтажа столбов освещения

Электромонтаж светильников наружного освещения осуществляется на опорах уличного освещения, мачтах осветительных, столбах линий электропередач и других сооружениях. Чтобы осветить ту или иную часть территории улицы, требуется смонтировать систему наружного освещения согласно нормам установки электроопор.

2. Расчет стрел провеса и нагрузок при различных климатических условиях

2.1. Вес кабеля

Вес кабеля в Н/м рассчитывается исходя из заданной массы кабеля кг/км по следующей формуле:

Где g – ускорение свободного падения, м/с2.

2.2. Растягивающая нагрузка, действующая на кабель

Растягивающая нагрузка, H, действующая на кабель вычисляется следующим образом:

где W — линейный вес кабеля, Н/м; L — расстояние между опорами, м; S – стрела провеса, м — определяемая как максимальная величина, на которую провисает кабель от горизонтальной линии между точками подвеса кабеля.

Исходя из формулы, видно, что нагрузка на кабель увеличивается с увеличением веса кабеля и расстояния между опорами и уменьшается при увеличении стрелы провеса. Начальная нагрузка на кабель:

2.3. Перепад высот между опорами

При разной высоте точек подвеса, кривая провисания кабеля будет несимметричной и низшая точка этой кривой будет находиться не посередине, а ближе к более низкой опоре. В данном случае, для расчета стрел провеса удобно пользоваться значениями эквивалентных пролетов.

Можно достроить левую ветвь кривой до точки, одинаковой по высоте с правой, и получить симметричную кривую. Расстояние L1 называется малым эквивалентным пролетом, а расстояние L2 – большим эквивалентным пролетом. Расстояния L1 и L2 рассчитываются следующим образом:

Стрелы провеса S1 и S2:

Где h – перепад высот между точками подвеса кабеля, м. В случае подвеса кабеля на одном уровне L1=L2=L и S1=S2=S.

2.4. Длина подвешенного кабеля

Очевидно, что длина подвешенного кабеля больше расстояния между опорами, за счет некоторого провеса кабеля и она, тем больше, чем больше стрела провеса. Длина подвешенного кабеля рассчитывается следующим образом:

2.5. Длина кабеля в ненагруженном состоянии

Для дальнейших расчетов необходимо знать длину кабеля между опорами, как если бы он не находился под действием растягивающих нагрузок (H = 0). Данная величина называется длиной кабеля в ненагруженном состоянии, Lн0:

2.6. Длина кабеля в ненагруженном состоянии с учётом температуры

Дальше необходимо определить длину кабеля в ненагруженном состоянии с учетом температуры кабеля, Lнк. Под действием температуры кабель может, как удлиняться, так и сжиматься и эта способность определяется температурным коэффициентом линейного расширения кабеля (ТКЛР, 1/°С).

где Т — температура кабеля в условиях эксплуатации; Тср — средняя температура эксплуатации.

2.7. Вес кабеля при воздействии максимального гололёда

В некоторые периоды эксплуатации происходит обледенение оптического кабеля подвешенного между опорами. При этом величина обледенения зависит от географического местоположения подвешенного кабеля и определяется районами гололедности по классификации и картам гололедных районов РФ, согласно Правилам устройства электроустановок (ПУЭ) — 7 ред. Гололедная нагрузка действует на кабель вертикально вниз. Исходя из заданного района гололедности определяют толщину стенки льда на кабеле и рассчитывают вес кабеля в условиях обледенения:

Где ρл — объемная масса гололеда (обычно 0,9·10-3), кг/см3; С — толщина стенки гололеда, мм; d — диаметр кабеля, мм; Ki и Kd — коэффициенты учитывающий изменение толщины стенки гололеда по высоте и в зависимости от диаметра провода. Коэффициенты Ki и Kd  учитывающие изменение толщины стенки гололеда:

Высота расположения приведенного центра тяжести проводов, тросов и средних точек зон конструкций опор над поверхностью земли, м Коэффициент Ki, учитывающий изменение толщины стенки гололеда по высоте над поверхностью земли
25 1,0
30 1,4
50 1,6
70 1,8
100 2,0
Диаметр провода (троса), мм Коэффициент Kd, учитывающий изменение толщины стенки гололеда в зависимости от диаметра провода (троса)
10 1,0
20 0,9
30 0,8
50 0,7
70 0,6

Примечание. Для промежуточных высот и диаметров значения коэффициентов Ki и Kd  определяются линейной интерполяцией. Нормативную толщину стенки гололеда плотностью 0,9 г/см3 следует принимать по табл. в соответствии с картой районирования территории России по толщине стенки гололеда или по региональным картам районирования.

Карта районов России по гололеду

Карта районирования территории РФ по толщине стенки гололеда. Детальнее смотрите в интерактивных климатических картах.

Нормативная толщина стенки гололеда bэ для высоты 10 м над поверхностью земли:

Район по гололеду Нормативная толщина стенки гололеда bэ, мм
I 10
II 15
III 20
IV 25
V 30
VI 35
VII 40
Особый Выше 40

2.8. Ветровая нагрузка на кабель при гололёде

Также необходимо учитывать, что в процессе эксплуатации на подвешенный оптический кабель действуют ветровые нагрузки и следует рассчитать максимальную нагрузку под воздействием ветра. Для этого, исходя из географического места подвеса кабеля, по классификации и картам районов РФ по максимальной ветровому давлению (или скорости ветра), выбирают необходимое значение.

Карта районов РФ по ветровому давлению

Детальнее смотрите в интерактивных климатических картах.

Ветровая нагрузка действует на кабель в горизонтальном направлении, перпендикулярном его оси.

Ветровая нагрузка (Н/м) рассчитывается следующим образом:

где aw — коэффициент, учитывающий неравномерность ветрового давления по пролету ВЛ, принимаемый равным:

Ветровое давление, Па До 200 240 280 300 320 360 400 500 580 и более
Коэффициент aw 1 0,94 0,88 0,85 0,83 0,80 0,76 0,71 0,70

Промежуточные значения aw определяются линейной интерполяцией; Kl — коэффициент, учитывающий влияние длины пролета на ветровую нагрузку, равный 1,2 при длине пролета до 50 м, 1,1 — при 100 м, 1,05 — при 150 м, 1,0 — при 250 м и более (промежуточные значения Kl определяются интерполяцией); Kw — коэффициент, учитывающий изменение ветрового давления по высоте в зависимости от типа местности, определяемый по таблице:

Высота расположения приведенного Коэффициент Kw для типов местности
центра тяжести проводов, тросов и средних точек зон конструкций опор ВЛ над поверхностью земли, м А В С
До 15 1,00 0,65 0,40
20 1,25 0,85 0,55
40 1,50 1,10 0,80
60 1,70 1,30 1,00
80 1,85 1,45 1,15
100 2,00 1,60 1,25
150 2,25 1,90 1,55
200 2,45 2,10 1,80
250 2,65 2,30 2,00
300 2,75 2,50 2,20
350 и выше 2,75 2,75 2,35

По условиям воздействия ветра на ВЛ различают три типа местности:

  1. А — открытые побережья морей, озер, водохранилищ, пустыни, степи, лесостепи, тундра.
  2. В — городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой не менее 2/3 высоты опор.
  3. С — городские районы с застройкой зданиями высотой более 25 м, просеки в лесных массивах с высотой деревьев более высоты опор, орографически защищенные извилистые и узкие склоновые долины и ущелья.

Cx — коэффициент лобового сопротивления, принимаемый равным: 1,1 — для кабелей, свободных от гололеда, диаметром 20 мм и более; 1,2 — для всех кабелей, покрытых гололедом, и для всех проводов и тросов, свободных от гололеда, диаметром менее 20 мм;

W — нормативное ветровое давление, Па, в рассматриваемом режиме:

  • в режиме максимального ветра: W = W0 — определяется по табл. в зависимости от ветрового района:
Район по ветру Нормативное ветровое давление W0, Па (скорость ветра v0, м/с)
I 400 (25)
II 500 (29)
III 650 (32)
IV 800 (36)
V 1 000 (40)
VI 1 250 (45)
VII 1 500 (49)
Особый Выше 1 500 (выше 49)
  • в режиме максимального гололеда: W = Wг — определяется, следующим образом: Нормативное ветровое давление при гололеде Wг с повторяемостью 1 раз в 25 лет определяется по скорости ветра при гололеде vг. Скорость ветра vг принимается по региональному районированию ветровых нагрузок при гололеде или определяется по данным наблюдений согласно методическим указаниям по расчету климатических нагрузок. При отсутствии региональных карт и данных наблюдений Wг = 0,25 W0.
    Если в исходных данных известна скорость ветра v0, то ветровое давление (Па) определяется следующим образом:

2.9. Максимальная нагрузка, действующая на кабель

Совместное действие вертикальной гололедной нагрузки и горизонтальной ветровой определяется как максимальная нагрузка по следующей формуле:

2.10. Расчет максимальной стрела провеса

2.10.1. Определив максимальную нагрузку, можно узнать длину кабеля в нагруженном состоянии (из п. 2.5. и п. 2.2.):

2.10.2. Эта же величина равна:

2.10.3. Из п.п. 2.2. и 2.4.

2.10.4. Подставив выражения из 2.10.3. в 2.10.2. получим:

2.10.5. Из п.2.4 находим:

Тогда:

2.10.6. Подставим выражение из п.2.10.5. в выражение из п.2.10.4.:

2.10.7. Приравняем выражения из 2.10.1. и 2.10.6.:

После преобразования, получим кубическое уравнение следующего вида:

2.10.8. Т. е.:

где:

2.10.9. Решив кубическое уравнение можно получить значения максимальной стрелы провеса при наиболее сложных погодных условиях:

Если

то:

Если

то:

2.11. Максимальная растягивающая нагрузка при наихудших условиях

Зная максимальную стрелу провеса кабеля, легко найти (по аналогии с п. 2.2.) максимальную растягивающую нагрузку, действующую на кабель, при наихудших погодных условиях:

Эквивалентные пролеты и стрелы провеса при переде высот между опорами рассчитываются по аналогии с п. 2.3, только вместо начального веса и нагрузки подставляются максимальный вес и максимальная нагрузка:

2.12. Расчет монтажной стрелы провеса, нагрузки и монтажной таблицы

По п. 2.6. определяется длина кабеля в ненагруженном состоянии с учетом монтажной температуры:

Далее расчет ведется, согласно п.п. 2.10.8, 2.10.9 и 2.11 подставляя соответствующую длину кабеля в ненагруженном состоянии (Lн.монT), модуль упругости кабеля Eкаб и вес кабеля W и определяется стрела провеса при соответствующей температуре монтажа (Sмон) и нагрузка (Hмон).

Монтажная таблица стрел провеса — монтажные нагрузки и стрелы провеса при различных температурах монтажа исходя из заданной начальной нагрузки. Расчет монтажной таблицы ведется аналогично расчету максимальной нагрузки и стрел. Определяется длина кабеля в ненагруженном состоянии при различной температуре:

где Тмон – температура кабеля в условиях эксплуатации; Тср – средняя температура эксплуатации. Эта длина используется при расчете коэффициентов для определения монтажной стрелы провеса, в качестве веса используется вес кабеля в нормальных условиях:

По рассчитанным коэффициентам вычисляется Sмон и Hмон, согласно п. 2.10.9 и 2.11.

2.13. Расчет конечной стрелы провеса и нагрузки при нормальных условиях

После воздействия на кабель максимально тяжелого режима (гололед с ветром), кабель возвращается (сжимается) в нормальное состояние по конечному модулю упругости, т. е. остается остаточное удлинение (см. п. 1.7). Для того чтобы рассчитать конечную стрелу провеса и нагрузку при нормальных условиях необходимо определить длину кабеля при воздействии максимальной нагрузки:

Далее эта длина приводится к длине кабеля в ненагруженном состоянии по конечному модулю упругости:

Затем по п.п. 2.10.8, 2.10.9 и 2.11 (подставляя W, Lкк, Eкон) находим конечную стрелу провеса Sн.кон и нагрузку Hн.кон. Эквивалентные длины пролетов и стрел провеса (при наличии перепада высот между опорами) определяются согласно п. 2.3., подставляя вес кабеля и рассчитанную нагрузку.

2.13. Расчет стрелы провеса и нагрузки при нормальных условиях после реализации вытяжки

В процессе эксплуатации кабеля при подвесе происходит его вытяжка (см. п.1.8). Для того, чтобы определить стрелу провеса Sн.выт и нагрузку Hн.выт после вытяжки, необходимо воспользоваться формулами из п.п. 2.10.8, 2.10.9 и 2.11, подставляя в коэффициент b вместо начального модуля упругости, модуль упругости после вытяжки Eвыт. Вес принимается равным весу кабеля. Эквивалентные длины пролетов L1н.выт, L2н.выт и стрел провеса S1н.выт, S2н.выт (при наличии перепада высот между опорами) определяются согласно п. 2.3., подставляя вес кабеля и рассчитанную нагрузку.

2.14. Расчет стрел провеса и нагрузок при минимальной и максимальной температуре эксплуатации после реализации вытяжки

По п. 2.6. определяется длина кабеля в ненагруженном состоянии с учетом минимальной или максимальной температуры:

Далее расчет ведется, согласно п.п. 2.10.8, 2.10.9 и 2.11 подставляя соответствующую длину кабеля в ненагруженном состоянии (Lн minT, Lн maxT), модуль упругости вытяжки Eвыт и вес кабеля W и определяется стрела провеса при соответствующей температуре (Sн minT, Sн minT) и нагрузки (Hн minT , Hн maxT).

2.15. Расчет стрелы провеса и нагрузки при максимальных условиях (гололед + ветер) после реализации вытяжки

Определяется длина кабеля между опорами по п. 2.4. подставляя соответствующие значения эквивалентных пролетов и стрел провеса после вытяжки в нормальных условиях (по п. 2.4):

Затем определяется длина кабеля в ненагруженном состоянии (по конечному модулю упругости) по п.2.5.:

С учетом температуры:

Далее расчет ведется, согласно п.п. 2.10.8, 2.10.9 и 2.11 подставляя соответствующую длину кабеля после вытяжки (Lк.каб.выт), конечный модуль упругости Eкон, максимальную нагрузку Wmax (из п. 2.9) и определяется стрела провеса при максимальных нагрузках после вытяжки (Smax выт) и нагрузка (Hmax выт). Эквивалентные длины пролетов L1 max выт, L2 max выт и стрел провеса S1 max выт, S2 max выт (при наличии перепада высот между опорами) определяются согласно п. 2.3., подставляя максимальную нагрузку Wmax и рассчитанную растягивающую нагрузку Hmax выт.

Воспользуйтесь нашим конфигуратором подвесных ВОЛС. С его помощью вы сможете автоматически:

  • рассчитать нагрузки и стрелы провеса кабеля при максимальных воздействиях льда и ветра, а также подготовить монтажные таблицы;
  • рассчитать эллипсы пляски кабеля для исключения их схлестывания с проводами;
  • подобрать рекомендуемые строительные длины кабеля в зависимости от мест расстановки муфт и длины трассы.

2.16. Определение роли вытяжки при расчете максимальных нагрузок

Если при воздействии максимальных нагрузок  на кабель (гололед и ветер), растягивающая нагрузка после реализации вытяжки (по п. 2.15) будет больше растягивающей нагрузки на кабель не подвергшийся вытяжке (по п. 2.11):

то в таком случае вытяжка является определяющим фактором и при расчетах необходимо учитывать стрелы провеса и нагрузки, возникающие после реализации вытяжки (по п. 2.15). Если же максимальная растягивающая нагрузка после вытяжки (по п. 2.15) меньше максимальной растягивающей нагрузки без учета вытяжки (по п. 2.11):

то в таком случае вытяжка НЕ является определяющим фактором и при расчетах необходимо учитывать стрелы провеса и нагрузки, возникающие после первоначального удлинения кабеля (по п. 2.11).

2.17. Расчет стрелы провеса и нагрузки при воздействии максимального гололеда

Для того, чтобы определить максимальную вертикальную стрелу провеса Smax.вер. и нагрузку Hmax.вер, необходимо воспользоваться формулами из п.п. 2.10.8, 2.10.9 и 2.11, подставляя Lк.каб.выт и Eкон (если вытяжка — фактор) или Lнк и Eнач (если вытяжка — не фактор). Вес принимается равным весу кабеля под воздействием гололеда Wг (по п. 2.7). Эквивалентные длины пролетов L1г, L2г и стрел провеса S1г, S2г (при наличии перепада высот между опорами) определяются согласно п. 2.3., подставляя вес кабеля под воздействием льда и рассчитанную нагрузку Hmax.вер.

2.18. Расчет стрелы провеса и нагрузки при воздействии максимальной силы ветра

Максимальная ветровая нагрузка, действующая на кабель определяется по п. 2.8:

При этом используется максимальное ветровое давление W0 и диаметр кабеля dкаб без воздействия гололеда. Если максимальная ветровая нагрузка при воздействии гололеда Wв (по п.2.8) больше максимальной ветровой нагрузки без гололеда Wв max:

то тогда для данного режима берется ветровая нагрузка при гололеде:

Для того, чтобы определить максимальную горизонтальную стрелу провеса Smax.гор. и нагрузку Hmax.гор, необходимо воспользоваться формулами из п.п. 2.10.8, 2.10.9 и 2.11, подставляя Lк.каб.выт и Eкон (если вытяжка — фактор) или Lнк и Eнач (если вытяжка — не фактор). Вес принимается равным весу кабеля под воздействием максимального ветра Wв max. Эквивалентные длины пролетов L1в, L2в и стрел провеса S1в, S2в (при наличии перепада высот между опорами) определяются согласно п. 2.3., подставляя вес кабеля под воздействием ветра Wв max и рассчитанную нагрузку Hmax.вер.

2.19. Проверка допустимости расчетных значений заданным условиям

Результаты расчетов должны быть проверены на допустимость заданным условиям (в тех частях, где они заданы): Максимальная растягивающая нагрузка на кабель не должна превышать допустимую:

Максимальная вертикальная стрела провеса не должна превышать допустимую:

Минимальное расстояние от кабеля (при максимальной вертикальной стреле) до земли не должно быть меньше допустимого:

Монтажная нагрузка не должна превышать максимально допустимую монтажную нагрузку:

И другие проверки согласно заданным условиям.

3.1. Расчет стрелы провеса на произвольном расстоянии от одной из опор

Для того, чтобы рассчитать стрелу провеса на любом расстоянии от одной из опор, достаточно воспользоваться следующей формулой:

Где y — расстояние от более высокой опоры, S2, L2 — эквивалентная стрела провеса и расстояние для более высокой опоры, Sy — стрела провеса на заданном расстоянии от более высокой опоры.

3.2. Расчет монтажной таблицы для других расстояний между опорами при заданной начальной стреле провеса или нагрузке

Если задана начальная стрела провеса, то начальная нагрузка рассчитывается по п. 2.2, подставляя требуемое расстояние между опорами Lx. Если задана начальная нагрузка, то начальная стрела провеса определяется из формулы по п. 2.2:

Далее расчёт ведется по п.п. 2.3–2.6 и 2.12.

2. Расчёт удельных механических нагрузок от атмосферных воздействий на фазные провода и грозозащитные тросы с учетом высот их крепления на промежуточной опоре

Расчёт удельных механических нагрузок от атмосферных воздействий на фазные провода и на грозозащитные тросы рассмотрим на примере сталеалюминиевого провода, состоящего из двух слоев (рис. 3). Конструктивные данные сталеалюминевого провода, приведенные ниже, выбранной марки определяем по справочным данным.

Поперечное сечение сталеалюминиевого провода

Рис. 3. Поперечное сечение сталеалюминиевого провода

В справочнике для сталеалюминиевого провода приводятся следующие параметры:

  • ?? — нормативный диаметр провода марки АС, мм;
  • ?? — диаметр стальной проволоки, мм;
  • ?? — диаметр алюминиевой проволоки, мм;
  • ?? — количество стальных проволок в проводе АС;
  • ?? — количество алюминиевых проволок в проводе АС;
  • M — масса 1 км провода, кг.

Сечения стальной и алюминиевой частей сталеалюминевого провода соответственно равны:

word-image-149.png

Соотношение сечений стальной и алюминиевой частей:

word-image-150.png

В зависимости от заданного климатического района определяют:

  • максимальный нормативный скоростной напор ветра на высоте до 15 м над поверхностью земли (например, в IV-м ветровом районе его принимают равным 650 Н/м2);
  • нормативную толщину стенки гололеда для высоты 10 м над поверхностью земли (во II-м гололедном районе составляет 10 мм);
  • наименьшее допустимое расстояние от проводов до поверхности земли для ненаселенной местности, в зависимости от уровня напряжения.

На сооружаемых ВЛ, как правило, применяются унифицированные и типовые опоры для данных климатических условий территории страны, в зависимости от населенной или ненаселенной местности. Паспортные данные опоры должны соответствовать перечисленным в таблице 2.

Строительная высота гирлянды изоляторов ? выбирается в зависимости от уровня напряжения воздушной линии электропередачи и может изменяться в пределах (0,7 ÷ 4,9) м.

Таблица 2. Стальная промежуточная одноцепная опора ВЛ 110 кВ

Ном.

напряж.

Шифр Условное

обозначение

Марка

провода

Толщина

стенкигололеда, мм

Длина пролета, м Расход

материалов

Габаритная Весового Ветрового Стали,

кг

110кВ П110-3 П-1Ц-Ст-С с

АС-120/19

по

АС-240/32

5, 10 365-440 155-555 435-445 2558

Расчет удельных механических нагрузок от атмосферных воздействий на фазные провода ВЛ проводится по следующему алгоритму:

— определяется постоянно действующая нагрузка от собственной массы провода:

word-image-151.png

— рассчитывается временно действующая нагрузка от массы гололедных отложений:

word-image-152.png

где: ? = ?н ∙ ??? ∙ ??ℎ — расчетная толщина стенки гололедного цилиндра на проводе, мм;

?н – нормативная толщина стенки гололеда;

word-image-153.png – поправочный коэффициент, учитывающий отличие диаметра провода от 10 мм;

word-image-154.png – поправочный коэффициент, учитывающий отличие высоты расположения приведенного центра тяжести проводов, ℎцт∗ от 15 м;

Приведенный центр тяжести проводов, ℎцт∗ определяется с учетом расположением проводов на опоре:

word-image-155.png

Для нижних проводов с учетом стрелы провеса:

word-image-156.png , где

[?] = ?трнж — ℎг — λ – наибольшая стрела провисания провода;

?трнж – высота траверсы опоры.

Приведенный центр тяжести всех проводов ℎцт∗ определяется по формуле:

word-image-157.png

где ∆λ1 – расстояния между нижним проводом и вторым проводом;

∆λ2 – расстояния между нижним проводом и третьим проводом;

N – количество цепей в ЛЭП.

По вычисленным значениям удельных нагрузок γ1 и γ2 определяют суммарную вертикальную удельную нагрузку от собственной массы провода и массы гололеда:

word-image-158.png

Затем определяют временно действующую горизонтальную нагрузку от давления ветра на провод, свободный от гололеда:

word-image-159.png

При заданном скоростном напоре ветра ?н, (Н/м2), коэффициент неравномерности распределения скоростного напора по длине ВЛ равен:

word-image-160.png

Значение аэродинамического коэффициента ?? зависит от ?? — нормативного диаметра провода марки АС (справочно). Поправочный коэффициент на высоту ??ℎ = 1 , при значении ℎцт∗ < 15 м при необходимости уточняется по справочнику.

В первом приближении при расчете коэффициента γ4 принимаем, что вектор скорости ветра направлен перпендикулярно проводам, тогда sin φ = 1.

Временно действующая горизонтальная нагрузка от давления ветра на провод, покрытый гололедом:

word-image-161.png

Результирующая удельная нагрузка от собственной массы провода и давления ветра:

word-image-162.png

Завершающим этапом расчета является определение результирующей удельной нагрузки на фазные провода или трос от массы провода, массы гололеда и давления ветра:

word-image-163.png word-image-164.png

Сравнение удельных нагрузок с учетом сочетаний массы провода, массы гололеда и давления ветра позволяет выявить наибольшую для данного региона и скорректировать параметры проводов воздушной линии.

Расчёт удельных механических нагрузок на грозозащитные тросы производится аналогичным способом, как и расчёт фазных проводов, конструктивные данные которых, приводятся в справочниках. Однако при вычислении приведенного центра тяжести троса ℎцтт необходимо учитывать высоту подвеса троса, т.е. высоту опоры ?оп:

word-image-165.png

т.е. учесть отличие высоты расположения приведенного центра тяжести троса от 15 м.

2.1. Расчет однородных (монометаллических) проводов

Исходным условием расчета грозозащитных тросов в нормальных режимах является обеспечение допустимой стрелы провеса при климатических условиях, соответствующих атмосферным перенапряжениям, принимают, что при данных условий А для надежной защиты проводов от непосредственного поражения молнией стрела провеса троса должна быть на 0,5 – 1,5 м меньше стрелы провеса провода (0,5 м – пролет 200 – 250 м; 1,5 м – пролет 450 – 500 м).

word-image-166.png

Кроме того, расстояние между верхним проводом и грозозащитным тросом в середине пролета в нормальном режиме работы линии должно быть не менее следующих значений (высота между проводом и тросом):

word-image-167.png

По стреле провеса троса определяется его механическое напряжение при климатических условиях соответствующих атмосферным перенапряжениям:

word-image-168.png

где, γ1т – удельная нагрузка троса от его собственной массы, word-image-169.png ;

l – длина пролета, м;

?тА – стрела провеса троса для условий А, м.

По найденному значению механического напряжения троса σтА и по уравнению состояния записанного для троса, определяется напряжение троса при любых климатических условиях:

word-image-170.png

Температура воздуха при атмосферных перенапряжениях принимается равной 15℃.

Климатические условия для проверки на прочность стального грозозащитного троса устанавливается путем расчета 3-его критического пролета:

word-image-171.png

Если ? < ?кр3, то уравнение состояния троса рассчитывается при средних эксплуатационных условиях и сравнивается с соответствующим дополнительным уравнением. Если ? > ?кр3, то расчет троса ведется по наибольшей механической нагрузке.

Цель механического расчета провода – выявить условия, обеспечивающие создание в них необходимого запаса прочности. Поэтому допустимое напряжение в проводе принимается значительно меньше его предельного сопротивления при разрыве, т.е.

word-image-172.png

где п – коэффициент запаса прочности провода.

В ГОСТ 839-74 «Провода неизолированные для линий электропередачи» для всех марок и конструкций проводов даны разрывные усилия провода в кгс. На основании этих данных предельное сопротивление при разрыве для любого провода определится из формулы:

word-image-173.png

где R – разрывное усилие провода. кгс; F – фактическая суммарная площадь сечения проволок, составляющих провод, мм2.

Кроме расчета проводов по максимально допустимому напряжению σдоп рассчитывают напряжение в них при среднегодовой эксплуатационной температуре ϑэ и отсутствии внешних нагрузок. Это напряжение, обозначаемое через σэ, значительно меньше σдоп. Ограничение напряжения в проводе до значения σэ при среднегодовой температуре служит для предотвращения преждевременного износа провода от усталости из-за вибраций в нем.

Для определения величины σэ в уравнение состояния провода в пролете в качестве исходных условий (т.е. величин с индексом m) принимают условия, отвечающие максимальному напряжению провода (σмин или ϑг), и затем определяют σэ при подстановке в уравнение соответствующих этому условию значений γ1 и ϑэ (вместо γ и ϑ).

Таким образом, провода (монометаллические и комбинированные) рассчитывают для следующих условий:

  • наибольшей внешней нагрузки;
  • низшей температуры при отсутствии внешних нагрузок;
  • среднегодовой температуры при отсутствии внешних нагрузок.

2.2. Тяжение по проводам и грозозащитным тросам при их разрывах

При обрыве провода (проводов) линии в одном из промежуточных пролетов снижается тяжение и напряжение в проводе той же фазы в неповрежденных промежуточных пролетах. При этом делается расчет приближения проводов к поверхности земли и усилий, воспринимаемых промежуточными опорами.

Наибольшее тяжение создается в проводе в промежуточном пролете примыкающем к анкерной опоре. Этот режим является расчетным для промежуточной опоры ограничивающей аварийный пролет.

При прохождении трассы ВЛ по населенной местности является обязательным обеспечение нормируемого приближения к землепровисных необорванных проводов. Для этих целей сокращается длина промежуточных пролетов, либо промежуточные опоры заменяются анкерными облегченными. Опоры до 1 кВ не рассчитываются по нагрузкам в аварийном режиме, для опор выше 1 кВ нормативное тяжение по проводам воспринимаемое промежуточной опорой определяется следующим образом:

  • по таблице ПУЭ при креплении проводов в глухих зажимах;
  • по паспортным данным зажимов при креплении проводов в зажимах с ограниченной прочностью заделки;
  • принимается равным 1,5 кН для крепления проводов к штыревым изоляторам;
  • рассчитывается на основе специальных методик.

При обрыве молниезащитного троса в одном из промежуточных пролетов тяжение по проводу в соседнем пролете определяется по следующей формуле:

word-image-174.png

?ТНБ – наибольшее тяжение троса;

σТНБ – наибольшее напряжение троса;

?т – поперечное сечение троса.

Просмотров: 2 121

Ширина просеки для ВЛ 10кВ

При прохождении ВЛ по лесным массивам должны быть прорублены просеки. С одной стороны, чем шире просека, тем надежнее электроснабжение, а с другой стороны – защитники окружающей среды не дадут выполнить широкую просеку, дополнительно к этому, за каждое срубленное дерево придется заплатить.

В этой теме попытаемся разобраться, какая должна быть ширина просеки при прохождении ВЛ 10 кВ по лесам. В настоящее время воздушные линии с голыми проводами практически не проектируют, поэтому будем рассматривать ВЛП и ВЛЗ.

ВЛП – воздушная линия с покрытыми проводами (РБ).

ВЛЗ – воздушная линия с защитными проводами (РФ).

ВЛП и ВЛЗ – синонимы.

Начнем с РФ, т.к. там, на мой взгляд, все значительно проще.

ПУЭ: 2.5.207. Для прохождения ВЛ по насаждениям должны быть прорублены просеки.

  1. Для ВЛЗ ширина просек в насаждениях должна приниматься не менее расстояния между крайними проводами плюс 1,25 м в каждую сторону независимо от высоты насаждений. При прохождении ВЛЗ по территории фруктовых садов с деревьями высотой более 4 м расстояние от крайних проводов до деревьев должно быть не менее 2 м.

Исходя из этого можно посчитать минимальную ширину просеки.

Если применить стойку СВ110-49, то расстояние между крайними проводами, расположенных горизонтально, будет 450+500=950 мм.

В таком случае ширина просеки должна быть 0,95+1,25+1,25=3,45 м.

Я не исключаю, что в РФ есть и другие документы, которые регламентируют ширину просеки для ВЛ. Если вам известны – напишите в комментариях.

А теперь перейдем к определению ширины просеки для ВЛП.

ТКП 339-2011: 5.3.14.2…

4) Для ВЛП ширина просек в насаждениях должна приниматься не менее расстояния между крайними проводами плюс 1,25 м в каждую сторону независимо от высоты насаждений. При прохождении ВЛЗ по территории фруктовых садов с деревьями высотой более 4 м расстояние от крайних проводов до деревьев должно быть не менее 2 м.

Как видим, пока требования такие как и в ПУЭ.

Однако, в изм.2 ТКП 339-2011 есть интересная фраза:

Изм.2 ТКП 339-2011
Изм.2 ТКП 339-2011

Теперь п. 4 звучит так:

4) Для ВЛП ширина просек в насаждениях должна приниматься не менее расстояния между крайними проводами плюс 1,25 м в каждую сторону независимо от высоты насаждений и рассчитывается по формуле: При прохождении ВЛЗ по территории фруктовых садов с деревьями высотой более 4 м расстояние от крайних проводов до деревьев должно быть не менее 2 м.

Стесняюсь спросить, а где формула? И вообще как понимать данный пункт? Принимается независимо от насаждений или рассчитывается по формуле?

В журнале ЭиМ нашел такую формулу, возможно, ее имели ввиду:

A = D + 2 (В + К),

где A — ширина просеки, м;

D — расстояние по горизонтали между крайними, наиболее удаленными проводами фаз, м;

В — наименьшее допустимое расстояние по горизонтали между крайним проводом ВЛ и кроной деревьев, м (для ВЛП 10 кВ не менее 1,25 м);

К — радиус горизонтальной проекции кроны деревьев.

Давайте посчитаем ширину просеки в сосновом лесу по этой формуле:

А=0,95+2 (1,25+7)=17,45 м. Мы получили, что ширина просеки практически равна ширине охранной зоны ВЛ и совсем не вяжется с 3,45 м.

Есть еще один документ:

ПУ ВЛП-10 кВ (Правила устройства опытно-воздушных линий электропередачи напряжением 10кВ с проводами покрытыми защитной изолирующей оболочкой): 11.3 Ширина просек в лесных массивах и зеленых насаждениях должна приниматься не менее расстояния между крайними проводами ВЛП при наибольшем их отклонении плюс 2 м в каждую сторону от них, независимо от высоты насаждений. Ширину просек следует определять с учетом роста деревьев за 6 лет.

Как правильно посчитать расстояния между крайними проводами ВЛП при наибольшем их отклонении? Если принять 1 м, то ширина просеки будет 1+2+2=5 м.

Вывод: нужно находить компромисс между теми, кто обслуживает ВЛ и защитниками окружающей среды. Не проблема ширину просеки сделать такой же как и охранная зона. А захочет ли за это платить заказчик? Можно предположить, что ширина просеки должна быть не менее ширины полосы земли, предоставляемой на период строительства воздушной линии (не более 8 м).

Вам приходилось проектировать ВЛП (ВЛЗ)? Как считали ширину просеки, какими нормами руководствовались?

Советую почитать:

Нужно ли учитывать естественное освещение при проектировании?

Изменение №2 к ТКП 45-2.02-190-2010

Альтернатива кабельным лоткам

Прокладка взаиморезервируемых кабелей в одном коробе

Санитарные зоны

Линии электрической передачи излучают полы электромагнитного типа, которые негативно воздействуют на человеческое здоровье, растений и животных. Под ЛЭП, начиная с 330 000 В, делают санитарные зоны. Их ширина будет составлять 10 метров со всех сторон. Замеры делают от проекции на грунт крайнего провода. Нельзя натягивать высоковольтные провода по воздуху на любых высотах над железными путями и газопроводами. В том случае, если появится обрыв, появится большой шанс аварии. Газопровод, который пущен по земле, не должен ни в коем случае пересекаться с линиями электрических передач по воздуху. Для пересечения должно быть подземное кабельное проведение с заземлением установок в точке выхода и входа линии. Электричество требуется поставлять в города и населенные пункты посредством линий электрической передачи.

Рядом может быть параллельный трубопровод, улицы с домами и автомобильная трасса. Норма на удаленность от них ЛЭП должна быть от 5 до 10 метров, а нормативы определяют шириной сан. зоны. Расстояние должно быть рассчитано с учетом границ участка дачного сектора. До жилых домов должно быть не меньше 100 метров дистанции, если напряжение больше, чем 35 000 В. Все требования к дистанциям между ЛЭП описаны в ГОСТе Р 21.1101-2009. На базе данного нормативного документа выполняют все расчеты и разрабатывают проекты линий электрической передачи.

Стальные опоры электропередачи

Стальные опоры широко применяют на ВЛ напряжением 35 кВ и выше.

По конструктивному исполнению стальные опоры могут быть двух видов:

  1. башенные или одностоечные (см. рис. 5.1, д);
  2. портальные, которые по способу закрепления подразделяютсяна свободностоящие опоры и опоры на оттяжках.

Достоинством стальных опор является их высокая прочность, недостатком — подверженность коррозии, что требует при эксплуатации проведения периодической окраски или нанесения антикоррозийного покрытия.

Опоры изготавливают из стального углового проката (в основном применяют равнобокий уголок); высокие переходные опоры могут быть изготовлены из стальных труб. В узлах соединения элементов применяют стальной лист различной толщины. Независимо от конструктивного исполнения стальные опоры выполняют в виде пространственных решетчатых конструкций.

Как натянуть кабельную линию?

Если так вышло, что данный провод провис в вашей зоне ответственности (ответвление от основной магистрали до вашего объекта собственности) и в акте соглашения на поставку электроэнергии записаны точки разграничения баланса, то ВЛ на этом участке является полностью вашим хозяйством.

Любые действия на ЛЭП производятся полностью обесточив данный участок, отключением секции на РП или воздушными разъединителями, и обезопасив себя, наложением переносного заземления с двух сторон от места работы. Натянуть провисший проводник можно после подачи заявления и получения разрешения от оперативного персонала или лица ответственного за данный участок и присоединение, и после отключения ими вашей линии от напряжения.

почему провода натянутые между столбами провисают

Для восстановления нормативных габаритов ЛЭП необходимо отсоединить все вводы, убрать виновников провисания — стволы деревьев или их ветки. Раскрутить бандажи на изоляторах освободив провод, оставив его свободно лежать на траверсах опор. Натяжка кабеля производится, как правило, с концевой анкерной опоры, которая имеет дополнительные подпорки, расположенные вдоль линии электропередачи компенсирующие нагрузку. Производят натяжку неизолированным алюминиевым проводником. Можно взять бывший в употреблении кусок около 20 метров. Посредством бандажа он соединяется с натягиваемым участком линии. После этого укладывается в щечки изолятора и производится натяжка провода. Теперь необходимо закрепить на изоляторе основной, куском из трех жил алюминиевым проводом как показано на фото:

почему провода натянутые между столбами провисают

Такая процедура производится со всеми изоляторами, вдоль натягиваемой линии до крайней опоры. После натяжки подключаются отводы и удостоверившись в готовности и безопасности линии, подают заявку на подачу напряжения.

Натяжка провода СИП происходит аналогично выше описанному методу, с той лишь разницей что вместо изоляторов используется специальная крепежная арматура и анкера, как показано на фото ниже:

почему провода натянутые между столбами провисают

Обратите внимание! Натяжка проводов осуществляется с небольшим провисанием, около полуметра, для компенсации температурных изменений в летние и зимние периоды.

Для натяжки линии ЛЭП, СИП или тросовой проводки, как восстанавливаемой так и вновь прокладываемой, используют ручные лебедки, трещотки или «лягушки», растягивая кабель между пролетами или опорами, на участке к дому или гаражу. Фиксируя в натянутом состоянии к анкерам и крепежной арматурой. На видео ниже наглядно показывается, как натянуть провод от столба к дому:

Этапы подключения электричества к дому

А на этом видео вы можете просмотреть технологию натяжки провода ручной лебедкой:

Как натянуть СИП лебедкой

Вот и все, что мы хотели рассказать о том, как натянуть провод от столба к дому и куда звонить, если вы обнаружили что кабель между зданиями или опорами провис. Как вы видите, натяжку кабельной линии нужно доверять специалистам, которые с помощью приспособлений могут быстро, а главное безопасно выполнить все работы!

Будет интересно прочитать:

  • Какой кабель выбрать для подключения дома к сети
  • Как подключить участок к электричеству
  • Требования к монтажу электропроводки

Инженеры всегда точно рассчитывают, сколько меди потребуется для проводов. Медь стоит дорого, её стараются всюду сэкономить.

Но вот связисты начинают подвешивать провода. Казалось бы, они должны натянуть их потуже, чтобы провода не провисали, тогда их потребуется меньше. Но на самом деле провода никогда не натягивают туго. Сделать этого нельзя потому, что длина проводов всё время меняется. Летом они бывают длиннее, а зимой короче. Ночью они тоже укорачиваются, а днём удлиняются.

Все металлические изделия заметно сокращаются от холода. Если в летний день туго натянуть провода, то зимой заметно уменьшатся в длине и так сильно натянутся, что могут лопнуть.

Конструктивные параметры воздушных линий электропередачи

Основные конструктивные параметры воздушной линии (ВЛ) — это длина пролета, стрела провеса проводов, расстояние от проводов до земли, до покрытия пересекаемых линией дорог и других инженерных сооружений (габарит).

Длиной промежуточного пролета называют расстояние вдоль линии, между двумя смежными промежуточными опорами. Длина пролета ВЛ-0,4 кВ колеблется в пределах 30 — 50 м и зависит от типов опор, марки, сечения проводов, а также климатических условий района.

Стрелой провеса проводов называют расстояние по вертикали между воображаемой прямой линией, соединяющей точки крепления проводов на двух смежных опорах и низшей точкой их провеса в пролете. Стрела провеса зависит от тех же факторов, что и длина пролета.

Габаритом ВЛ называют наименьшее расстояние по вертикали от проводов до поверхности земли, рек, озер, линий связи, шоссейных и железных дорог и т.п. Габарит ВЛ регламентируется ПУЭ и зависит от напряжения и посещения местности людьми.

Для обеспечения нормальной работы и безопасного обслуживания ВЛ расстояния от них до различных сооружений должны соответствовать нормам, установленным ПУЭ. Так, расстояние от проводов до поверхности земли по вертикали при наибольшей стреле провеса должно быть не менее 6м в населенной местности, расстояние от проводов до земли может быть уменьшено в труднодоступный местности до 3,5 м и в недоступной местности до 1 м. Расстояние 4 по горизонтали от проводов ВЛ до балконов, терасс, окон зданий должно составлять не менее 1,5 м, а до глухих стен не менее 1 м. Прохождение ВЛ над зданиями не допускается.

Трасса ВЛ может проходить по лесным массивам и зеленым насаждениям. Расстояние по горизонтали от проводов до кроны деревьев и кустов при наибольшей стреле провеса должно быть не менее 1 м.

Опоры ВЛ должны быть расположены от трубопроводов на расстоянии не менее 1 м, от колодцев подземной канализации и водозаборных колонок — не менее 2 м, от бензоколонок не менее 1 м, от силовых кабелей — 0,5-1 м.

Пересечение ВЛ судоходных рек правилами не рекомендуется. При пересечении несудоходных и замерзающих небольших рек и каналов расстояние 4 от проводов ВЛ до наивысшего уровня воды должно быть не менее 2 м, а от поверхности льда не менее 6 м. Расстояние по горизонтали от опоры ВЛ до воды должно быть не менее высоты опоры ЛЭП.

Угол пересечения ВЛ с улицами, площадями, а также с различными сооружениями не нормируется. Пересечения ВЛ до 1 кВ между собой рекомендуется выполнять на перекрестных опорах, а не в пролетах.

Пересечения ВЛ с воздушными линиями связи и сигнализации должны выполняться только в пролете линии, причем провода ВЛ должны располагаться выше.

Расстояние между верхним проводом линии связи и нижним ВЛ должно быть не менее 1,25 м. Особые требования предъявляют к проводам ВЛ в пролете пересечения: они должны быть многопроволочные, сечением не менее 25 мм2 (стальные и сталеалюминиевые) или 35 мм2 (алюминиевые) и закреплены на опорах двойным креплением. Опоры ВЛ, ограничивающие пролет пересечения с линиями связи I и II классов, должны быть анкерными, при пересечении с линиями связи других классов допускаются промежуточные опоры (деревянные должны иметь железобетонные приставки).

При пересечении подземных кабельных линий связи и сигнализации опоры ВЛ должны располагаться на возможно большем расстоянии от кабеля (но не менее 1 м между заземлением опоры и кабелем в стесненных условиях).

Сближение ВЛ с воздушными линиями связи допускается на расстояние не менее 2 м, а в стесненных условиях — не менее 1,5 м. Во всех остальных случаях это расстояние принимают не менее высоты наибольшей опоры ВЛ или линии связи.

При пересечении не электрофицированных магистральных железных дорог общего пользования, переходные опоры ВЛ должны быть анкерными, подъездные железнодорожные пути допускается пересекать ВЛ на промежуточных (кроме деревянных) под углом не менее 40 град. и по возможности близким к 90 град. Электрифицированные железные дороги должны пересекаться кабельной вставкой в ВЛ.

Пересечение ВЛ автомобильных дорог I категории должно выполняться на анкерных опорах, остальные дороги разрешается пересекать на промежуточных опорах. Сечение проводов ВЛ, проходящих над автомобильными дорогами, должно быть не менее 25 (сталеалюминиевых и стальных) и 35 мм2 (алюминиевых). Наименьшее расстояние от проводов ВЛ до полотна автодороги должно быть не менее 7 м. При переходе через трамвайные и троллейбусные линии наименьшее расстояние от проводов ВЛ до поверхности земли должны быть не менее 8 м.

На рисунке показана схема анкерного пролета ВЛ и пролета пересечения с железной дорогой.

Расстояние по вертикали от проводов линии до поверхности земли в ненаселенной местности при нормальном режиме работы должно быть не менее 6 м для ВЛ до 110 кВ, 6,5, 7, 7,5, 8 м соответственно для ВЛ 150, 220, 330, 500 кВ.

Нормы провисания

Рассмотрим нормативы ПУЭ главы 2.4 и 2.5 по отношению к провисанию ВЛ высокого напряжения.


Вблизи дорог


Расстояние по горизонтали


При пересечении ВЛ


Населенная местность


Ненаселенная местность

Как видно из таблиц от величины напряжения зависит расстояние от земли до ЛЭП, а также между проводами и другими объектами. Для сетей 380 вольт нормативы провисания согласно главе 2.4 ПУЭ такие:

  1. Над пешеходной зоной высота не ниже 3,5 метров, а над проезжей частью это расстояние должно быть на высоте не ниже пяти метров, ответвление ввода допускается делать на высоте 2,5 метра для провода СИП.
  2. Для линий с неизолированными проводниками высота не ниже трех с половиной метров над пешеходной зоной, и не менее 6 метров над проезжей частью дороги, ответвление допускается производить не ниже 2,75 метра.
  3. При прохождении СИП возле зданий, расстояние от кабеля до балкона составляет не менее одного метра и не менее двадцати сантиметров от провода до глухой стены.
  4. В случае с неизолированными проводниками расстояние от окон, террас и балконов составляет не менее полутора метров и не меньше одного метра вдоль глухой стены.
  5. Располагать ВЛ с неизолированными проводниками над строениями категорически запрещено из соображения безопасности.

Нормы провисания провода от столба к дому

Расстояние от ЛЭП до забора жилого частного дома

Ежедневно человек пользуется электроэнергией, которая поступает к нам домой через линии электропередач. Расстояние от забора частного дома до ЛЭП играет важную роль. Поскольку излучаемые линиями электропередач магнитные волны негативно влияют на здоровье человека. Но мало кто углубляется в суть этой проблемы. Поэтому оставляет без внимания установку все новых столбов возле жилого участка.

Линии высоковольтных электропередач

Однако придерживаться установленных законом правил все же рекомендуется. От этого может зависеть здоровье всех членов семьи. Причины того, почему следует придерживаться установленных правил очевидны:

  1. В охранной зоне ЛЭП в непосредственной близости от самой линии электропередачи, территория может ограждаться промышленным забором. В этом случае ставится полный запрет на строительство жилых домов вблизи опасного участка.
  2. Для защиты здоровья человека, так как электромагнитные поля негативно влияют на состояние мозга человека.

Вернуться к оглавлению

Действующие нормы

Исходя из действующих санитарных норм, СанПиН 2971-84, безопасным принято считать расстояние в 20 м от места установки забора до опоры воздушной линии в 110 кВ.

Схематический рисунок охранной зоны

Если напряжение на линии электропередач достигает 500 кВ, то нормой для возведения любой капитальной постройки принято считать расстояние в 30 м. Если порог напряжения на ЛЭП достигает диапазона в 750 кВ, то минимальным расстоянием для строительства заборов и иных конструкций принято считать 40 м. Если порог напряжения линии электропередач достигает 1 150 кВ, то расстояние от опоры до объектов должно составлять не менее 55 м.

Схема привязок охранных зон в зависимости от напряжения

Если планируется строительство жилого объекта возле линии электропередач, то уровень ее воздействия можно минимизировать такими способами:

  1. Использовать экранирующие устройства и сооружения. Они позволят защитить жилье и станут препятствием установленным линиям.
  2. Опора должна находиться максимально далеко от жилого объекта. Поэтому дом следует строить на определенном расстоянии.

Строительные нормы также предписывают и другие нормативы, которые необходимо соблюдать. Это и расстояние от забора до теплицы, и дистанция от туалета до забора, и множество других.

Порог допустимого расстояния

Если учитывать санитарные и строительные нормы, то от ЛЭП хорошо защищают заземленные кровельные перекрытия. Как вариант — из металлочерепицы или профилированного настила. Арматурная сетка внутри конструкции снизит воздействие электромагнитных волн, которые присущи столбу с линиями электропередач.

В правилах устройства электроустановок прописано оптимальное расстояние до объектов от свисающих проводов.

Дачный участок должен находиться на безопасной дистанции от ЛЭП. До деревьев должна сохраняться дистанция в 2 м по горизонтали. А вот полностью удалять фруктовые сады не обязательно, что и прописано в действующих нормах.

Расстояние провода (6-10 кВ) по направлению к земле должно составить:

  • 3 м между самими проводами и скалами, утесами и склонами,
  • 5 м между линиями и поверхностью воды (топь, болото и др.),
  • 6 м до земли в не жилом районе,
  • 7 м до поверхности грунта в жилом районе.

Схема допустимых расстояний

До ближайшей автозаправочной станции или местах хранения пожароопасных и взрывоопасных веществ понадобится промежуток не менее полутора показателей высоты от поверхности грунта до ЛЭП.

Дистанция до дорог, расположенных параллельно, составляет размер высоты опоры плюс пять метров. Измерения проводится от нижней части самой опоры и до края земляного полотна. При этом сам провод также должен быть определенного сечения: 25 мм2 для стального или 35 мм2 для алюминиевого. Минимальная высота над дорогой должно составить 7 метров (для проезда фур и других крупногабаритных автомобилей).

Промежуток до жилых построек должен составить 1,5 метра до лоджий и балконов, и метр до поверхностей других построек, в том числе и глухих стен. Над жилыми зданиями провода проходить могут, но только те, которые предназначены для снабжения электроэнергией жилых домов.

Измеряется промежуток по горизонтали от крайних проводов (220 кВ), до построек и составляет не менее:

  • 2-х м для 20 кВ,
  • 4-х м для 35 – 110 кВ,
  • 5 м для 150 кВ,
  • 6 м для 220 кВ.

Схематический рисунок с нормами подключения жилых домов к линии электропередач

Не допускается прохождение линий над стадионами, бассейнами, детскими учреждениями и учебными заведениями.

Протяженность до ближайшего газопровода, что прокладывается параллельно, должна быть не менее размера высоты опоры до 1 кВ. А она зависит от местности ее применения. При пересечении понадобится установка защитных экранов. Приведенные выше данные не относятся к категории подземных ЛЭП.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...